IMMM 2020
Towards Inter-Rater-Agreement-Learning
Michael Spranger
How AI shape our Life

It is difficult to think of a major industry that AI will not transform. This includes healthcare, education, transportation, retail, communications, and agriculture. There are surprisingly clear paths for AI to make a big difference in all of these industries.
Andrew Ng

It's very clear that AI is going to impact every industry. I think that every nation needs to make sure that AI is a part of their national strategy. Every country will be impacted.
Jensen Huang

I think that AI will lead to a low cost and better quality life for millions of people. Like electricity, it's a possibility to build a wonderful society.
Andrew Ng
A good AI’s needs

Commonly, a human-labeled dataset is considered as ground-truth.

The truth is rarely pure and never simple.
Oscar Wilde

Ideally, an expert-labeled dataset should be considered as ground-truth.

If you have a lot of data and you want to create value from that data, one of the things you might consider is building up an AI team.
Andrew Ng

Usually, machine learning needs much data, but there are not enough experts to label it.
Consensus by majority

I vote for COFFEE.

Let's have COFFEE.

What about TEA?

I prefer TEA.

COFFEE is better.

COFFEE = 3
TEA = 2

https://www.google.com/search?q=consensus&tbs=isch&hl=de&lr=lang&client=opera8&hs=LFj&sa=X&ved=8CAE&source=TCMIsp7uS&ses=CFQAAAAAdAAAAABAF&hl=de&gl=de&client=firefox-b&rlz=1C5CHFA_enDE100SDE100&ei=5ZQjX7atlAXJ8QZ1o5cBAQ
Are all ratings equally valuable?

Should all ratings for an item have the same weight?
Weighted Learning Approach

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_j</td>
<td>rater’s competence</td>
</tr>
<tr>
<td>$f(t_{ji}, C_j)$</td>
<td>value depending on the response time and the conscientiousness of a specific rater who needs to annotate an item i at time t</td>
</tr>
<tr>
<td>β_i</td>
<td>weighting parameter</td>
</tr>
<tr>
<td>x_i</td>
<td>feature (self-judgement, Intra-Rater-Agreement,…)</td>
</tr>
</tbody>
</table>

\[
W_{ji} = R_j - f(t_{ji}, C_j)
\]

\[
R_j = \frac{\sum_{l=1}^{n} \beta_l x_{lj}}{\frac{1}{|J|} \sum_{j'=1}^{|J|} \sum_{l=1}^{n} \beta_l x_{lj'}}
\]

\[
f(t_{ji}) = \begin{cases}
0, & C_j > \bar{t}_i \land t_{ji} \in [\bar{t}_i, C_j] \\
0, & C_j < \bar{t}_i \land t_{ji} \in [C_j, \bar{t}_i] \\
t_{ji} - \bar{t}_i, & C_j > \bar{t}_i \land t_{ji} \notin [\bar{t}_i, C_j] \\
\bar{t}_i - t_{ji}, & C_j < \bar{t}_i \land t_{ji} \notin [C_j, \bar{t}_i]
\end{cases}
\]
Weighted Learning Approach

Taking time (already labeled items) into account:

\[
w_{ji} = (1 - b_{ji})R_j - f(t_{ji}, C_j) + \frac{1}{b_{ij}} \sum w_{j(i-1)}
\]

\[
b_{ji} = \frac{1}{\lambda(i-1)} \sum_{k=0}^{i-1} \begin{cases} 1, & \text{for } j \text{ in majority for item } k \\ 0, & \text{else} \end{cases}
\]
Preliminary Results

3000 texts from music domain

<table>
<thead>
<tr>
<th>Threshold</th>
<th>is Music</th>
<th></th>
<th>Uncertain</th>
<th></th>
<th>not Music</th>
<th></th>
<th>No Majority</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UW</td>
<td>W</td>
<td>UW</td>
<td>W</td>
<td>UW</td>
<td>W</td>
<td>UW</td>
<td>W</td>
</tr>
<tr>
<td>0.5</td>
<td>1534</td>
<td>1560</td>
<td>3</td>
<td>6</td>
<td>1344</td>
<td>1357</td>
<td>119</td>
<td>77</td>
</tr>
<tr>
<td>0.55</td>
<td>1456</td>
<td>1481</td>
<td>2</td>
<td>2</td>
<td>1298</td>
<td>1302</td>
<td>244</td>
<td>215</td>
</tr>
<tr>
<td>0.6</td>
<td>1373</td>
<td>1410</td>
<td>2</td>
<td>1</td>
<td>1240</td>
<td>1249</td>
<td>386</td>
<td>339</td>
</tr>
<tr>
<td>0.65</td>
<td>1278</td>
<td>1314</td>
<td>0</td>
<td>0</td>
<td>1175</td>
<td>1182</td>
<td>547</td>
<td>504</td>
</tr>
<tr>
<td>0.7</td>
<td>1128</td>
<td>1191</td>
<td>0</td>
<td>0</td>
<td>1115</td>
<td>1139</td>
<td>757</td>
<td>670</td>
</tr>
<tr>
<td>0.75</td>
<td>982</td>
<td>1072</td>
<td>0</td>
<td>0</td>
<td>1064</td>
<td>1081</td>
<td>954</td>
<td>847</td>
</tr>
<tr>
<td>0.8</td>
<td>825</td>
<td>918</td>
<td>0</td>
<td>0</td>
<td>998</td>
<td>1025</td>
<td>1177</td>
<td>1057</td>
</tr>
<tr>
<td>0.85</td>
<td>648</td>
<td>739</td>
<td>0</td>
<td>0</td>
<td>931</td>
<td>952</td>
<td>1421</td>
<td>1309</td>
</tr>
<tr>
<td>0.90</td>
<td>435</td>
<td>504</td>
<td>0</td>
<td>0</td>
<td>821</td>
<td>842</td>
<td>1744</td>
<td>1654</td>
</tr>
<tr>
<td>0.95</td>
<td>236</td>
<td>270</td>
<td>0</td>
<td>0</td>
<td>601</td>
<td>636</td>
<td>2163</td>
<td>2094</td>
</tr>
</tbody>
</table>

„No Majority“ decreases for each threshold
Conclusion & Future Work

• flexible weighting approach for Inter-Rater-Agreement
• strengths and weaknesses of different raters are considered
• automatic adaptation to dynamic user characteristics like concentration, motivation etc.
• results on a first dataset providing only few parameters leads to less items with “no majority”
• Future work will incorporating tests on a multi-lingual dataset including more features