

Cohort-Based Construct for Vehicular Cyber-Physical Systems

Imen Zidi, Abir Ben Ali and Farouk Kamoun

Presenter: Imen Zidi

Presenter e-mail: zidi.imene@gmail.com

Imen Zidi, received the computer sciences master degree from the university of Sousse, Sousse Tunisia, currently, a computer sciences Ph.D student at the university of Manouba, Tunis Tunisia.

Outline

1. Context

2. Problematic

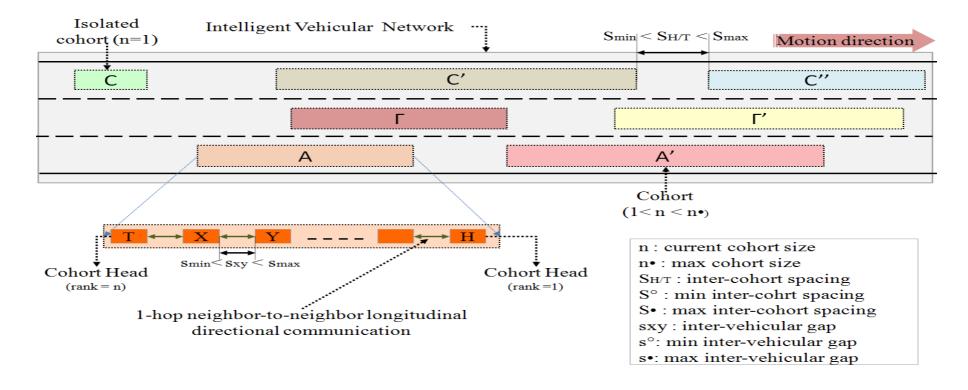
3. System Model

4. Cohort management distributed algorithms

5. Conclusion and future work

Context

This work is conducted as a part of my Ph. D thesis, where we aim to develop an *Intelligent Vehicular Environment* based on distributed and deterministic solutions, with the purpose to improve road user *safety*.


Problematic

- > Random topology with unbounded-size
- > Timeliness issues
- > Reliability issues
- > Connectivity issues

Proposed Solutions: System model

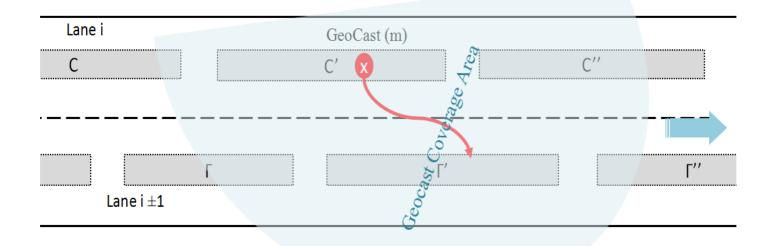
☐ Cohort

Fully-distributed, linear and size-bounded cyber-physical cluster of consecutive vehicles

➤ N2N directional communication based on deterministic MAC layer protocol

Proposed Solutions: System model

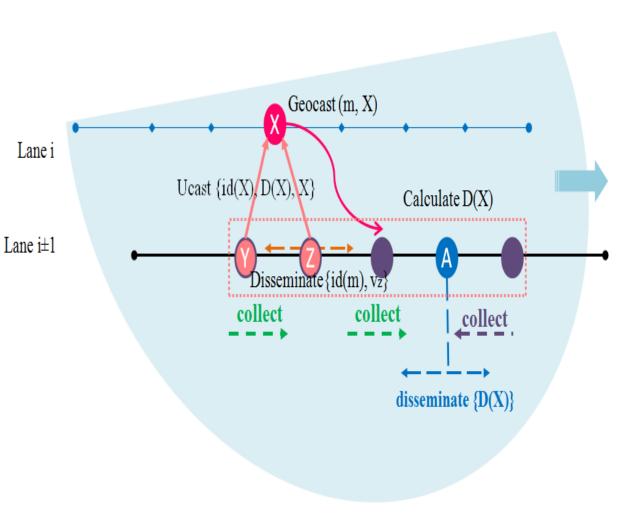
☐ Highway lane changing maneuver


> Assumptions:

- The entire IVN is divided into many cohorts of variable size.
- Each cohort is formed by $n < n \bullet$ of nodes moving in the same direction at a similar velocity.
- Cohort's members' cooperation is ensured by directional N2N communication.
- Periodic control messages exchange, essential for cohort management and local member data update
- Each vehicle X is able to perform a lane changing maneuver,

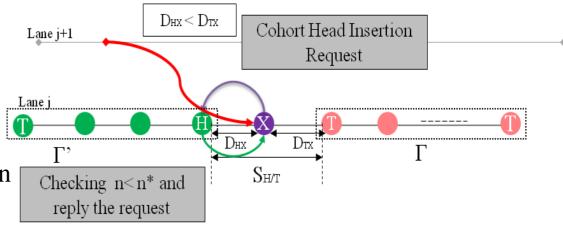
Proposed Solutions: System model

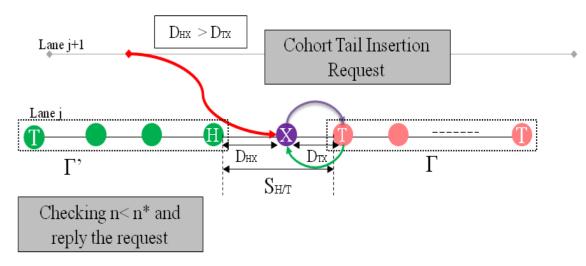
- ☐ Highway lane changing maneuver
 - > By leaving its current cohort the vehicle X has to:
 - > Create its own cohort
 - ➤ Join a pre-existing cohort, with respect :
 - The upper size of the cohort should not be exceeded
 - The available space must respect the constraint of safe inter and intra cohort spacing


- ☐ Highway lane changing maneuver
- \triangleright at time τ , X has the coordinates (x,y) and moving with at the velocity on the lane i.
- \triangleright At the time $\tau+\varepsilon$, X wants to be at the position (x',y') on an adjacent lanei ± 1 .

> Three use cases are highlighted within this work

☐ Middle Cohort Insertion

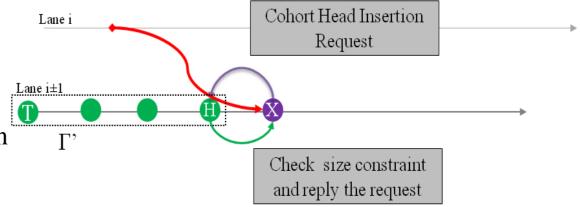

- ➤ **Phase 1**: looking for eligible vehicles
- ➤ **Phase 2** : *agreement phase*, selecting actors
- ➤ **Phase 3**: informing the requestor about the decision


☐ Inter-Cohort Insertion

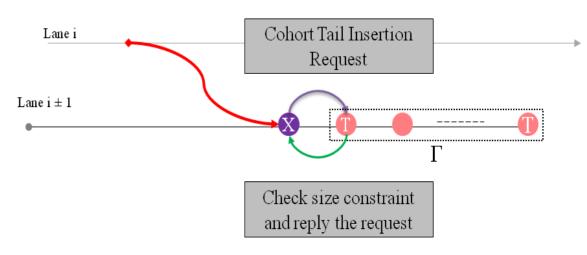
After leaving its cohort X is located between cohorts Γ and Γ '

X has the freedom to select its future cohort with respect of the cohort size and the available space

a-Inter-cohort Spacing: Cohort Head Insertion



☐ Free Space Insertion


After leaving its cohort X is located in an open space

Create new cohort.

➤ Try to join existing one by deceleration/acceleration maneuver

a- Free-Space : Cohort Head Insertion

b-Free-Space: Cohort Tail Insertion

Conclusion and Future Works

- ➤ Breaking down IVN into fully-distributed and bounded-size cohorts, based on deterministic solutions and short range N2N directional communications, would help:
 - i. Alleviating the vehicular environment complexity,
 - ii. Ensuring road traffic safety and efficiency,
 - iii. Minimizing collision and interference in terms of networking side.

Conclusion and Future Works

- ➤ Develop distributed and deterministic MAC layer algorithm based on N2N communication
- > Develop consensus algorithm adapted to our proposed vehicular environment

Thank you!