

Modeling transient perturbations Waves in heterogeneous and time-varying media

Damian P. San Roman Alerigi, ph. d. Production Technology Division EXPEC-Advanced Research Center | Saudi Aramco IARA/ICSNS 2020

Damian works at the intersection of photonics, applied physics, and applied mathematics. This interdisciplinary work led him to develop a new numerical scheme to solve hyperbolic PDEs with

interdisciplinary work led him to develop a new numerical scheme to solve hyperbolic PDEs with space-time-varying coefficients, and propose novel photonic integrated circuits (PICs) with applications in many branches of science and engineering.

He has a B. Sc. in Physics from the National Autonomous University of Mexico (UNAM), and M.Sc. (2010) and Ph.D. (2014) in Electrical Engineering from King Abdullah University of Science and Technology (KAUST)

What happens when materials vary in time?

Space-time's geometry and Lagrange equations

Fresnel drag factor

 $u \approx \frac{c}{n} + v\left(1 - \frac{1}{n^2}\right) = u_o + w$

Francois Arago. Source: Wikimedia Commons

Waves are dragged by the moving media!

The speed of light in a medium is given by the index of refraction, *n* as $u = \frac{c}{n}$

If the medium moves at speed v then the velocity transforms to

$$u' = \frac{v + \frac{c}{n}}{1 + \frac{v}{cn}}$$

If $v \ll c$ the difference between u' and u is

$$\Rightarrow u' - u = \frac{v + \frac{c}{n}}{1 + \frac{v}{cn}} - \frac{c}{n} = \frac{v(1 - n^{-2})}{1 + \frac{v}{cn}} \approx v\left(1 - \frac{1}{n^2}\right)$$

How to find the path of massless particles?

Lagrange equations

Let every point \vec{r} in space be $\{x^0, x^1, x^2, x^3\}$, and the metric $ds^2 = g_{ii}dx^i dx^i$, g = diag(c, -1, -1, -1).

Lagrangian is given by

$$\mathcal{L} = \frac{1}{2} \left[g_{ij} \frac{\partial x^i}{\partial \tau} \frac{\partial x^j}{\partial \tau} \right].$$

Solve Lagrange-Euler equations for the photon path,

$$\ddot{x}^i = \frac{(c\dot{x}^0)^2}{n^3} \frac{\partial n}{\partial x^i}$$

$$\ddot{x}^{0} = \frac{(c\dot{x}^{0})}{n} \left(c\dot{x}^{0} \frac{\partial n}{\partial x^{0}} + 2\dot{x}^{i} \frac{\partial n}{\partial x^{i}} \right).$$

Mimicking nature

Mimicking celestial mechanics. Refraction in heterogeneous media with radial symmetry [San-Rom'an-Alerigi et al., 2013].

Gauss beam profile

J₀-Gauss-Bessel beam profile

Wave phenomena

Maxwell's equations in a charge- and current-free space,

$$\vec{D}_t - \nabla \times \vec{H} = 0, \qquad (1a)$$
$$\vec{B}_t + \nabla \times \vec{E} = 0. \qquad (1b)$$

With constitutive relations

$$\vec{D} = \vec{\zeta}_e \left(\bar{\varepsilon}, \vec{E} \right) \equiv \vec{\zeta}_e \left(\bar{\eta}_e, \vec{q}_e \right), \qquad (2a)$$
$$\vec{B} = \vec{\zeta}_h \left(\bar{\mu}, \vec{H} \right) \equiv \vec{\zeta}_h \left(\bar{\eta}_h, \vec{q}_h \right), \qquad (2b)$$

Let

$$\vec{q} = \left(egin{array}{c} E \\ H \end{array}
ight), \qquad \vec{f} = \left(egin{array}{c} H \\ E \end{array}
ight)$$

And define

$$\bar{\kappa} = \begin{pmatrix} \partial_E \zeta_e & 0\\ 0 & \partial_H \zeta_h \end{pmatrix}, \qquad \vec{\psi} = \begin{pmatrix} -\partial_\varepsilon \zeta_e & \partial_t \varepsilon\\ -\partial_\mu \zeta_h & \partial_t \mu \end{pmatrix}.$$

where $\bar{\kappa}$ is the capacity function, $\vec{\psi}$ is the source term, and \vec{f} is the flux.

General hyperbolic PDE

We can rewrite Maxwell's equations as:

$$\bar{\kappa}(\vec{q},x,t)\cdot\vec{q}(x,t)_t+\vec{f}(\vec{q})_x=\vec{\psi}(\vec{q},x,t)$$

Incorporates heterogeneous, time-varying and anisotropic materials...

Many wave phenomena can be described by this equation!

Solution

Flux differences between adjacent cells results in a Riemann problem, where the fluctuations at $x_{i-\frac{1}{2}}$ can be approximated in term of f-waves, the jump difference at the given interface.

$$\frac{\partial Q_i}{\partial t} = -\frac{1}{\bar{K}_i \Delta x} \left(\mathcal{A}^+ \Delta q_{i-\frac{1}{2}} + \mathcal{A}^- \Delta q_{i+\frac{1}{2}} + \mathcal{A} \Delta q_i - \Delta x \Psi_i \left(q_{i-\frac{1}{2}}^R, q_{i+\frac{1}{2}}^L, t \right) \right).$$

To integrate use the ten-stage fourth-order strong-stability-preserving Runge-Kutta scheme described in [Ketcheson, 2008]. For reconstruction use fifth-order WENO reconstruction [Shu, 2009].

Algorithm, at every Runge-Kutta stage

- **①** Set cell averages of the capacity \bar{K}_i^n
- ② Reconstruction, using fifth-order WENO compute the piecewise elements of q to get states $q_{i-\frac{1}{2}}^R, q_{i+\frac{1}{2}}^L$
- 3 Solve the Riemann problem with initial states $(q_{i-\frac{1}{2}}^L, q_{i+\frac{1}{2}}^R)$ to compute the fluctuations, $\mathcal{A}^{\pm} \Delta q_{i-\frac{1}{2}}$
- (a) Calculate the total fluctuation $\mathcal{A}\Delta q_i$, use states $q_{i+\frac{1}{2}}^L, q_{i-\frac{1}{2}}^R$
- (5) Set the cell averages of the source Ψ_i^n and subtract
- Compute $\partial Q_i / \partial t$ using the semidiscrete scheme

Oscillating Media

Consider a flowing medium such that

$$\varepsilon_r = \mu_r = \eta = \eta_o + \delta\eta\sin\omega t$$

And the initial right-moving pulse as initial condition

$$E = H = q = q_p \exp \left(\frac{x - x_o}{\sigma^2}\right)^2$$

(a) Staggered plot of field intensity (black) and refractive index (green); (b) trace of peak; and (c) velocity of peak

Flowing medium

Consider a flowing medium such that

$$\varepsilon_r = \mu_r = \eta = \eta_o + \delta\eta \exp \left(\frac{x - x_o - v t}{\sigma^2}\right)^2$$

And the initial right-moving pulse as initial condition

$$E = H = q = q_p \exp \left(\frac{x - x_o}{\sigma^2}\right)^2$$

Characteristic of the solution as seen by an external observer

Characteristic of the solution as seen by a co-moving observer

Staggered plot of field intensity (black) and refractive index (green); the latter being a Gaussian-like perturbation to the refractive index moving with velocity v = 0.59

Adding nonlinearity

Staggered plot of field intensity (black) and refractive index (green); the latter being a Gaussian-like perturbation to the refractive index moving with velocity v = 0.59 and nonlinear $\chi^{(3)} = 0.1$

Rate of change with respect to time for the maximum intensity as seen from the laboratory frame; here the medium is a Gaussian-like perturbation to moving with velocity v = 0.61 and nonlinear $\chi^{(3)} = 0.1$

Consider a flowing medium such that

$$\kappa_i = \eta_o + \delta\eta \exp \left(\frac{x - x_o - v t}{\sigma_x^2}\right)^2 - \left(\frac{y - y_o}{\sigma_y^2}\right)^2$$

And the initial right-moving pulse as initial condition

$$q_0(x,0) = 0.0,$$

$$q_1(x,0) = g(y, y_o) q_o(x, x_o, \sigma),$$

$$q_2(x,0) = g(y, y_o) q_o(x, x_o, \sigma),$$

$$g(y) = \cos \frac{(y - y_o) \pi}{L_y},$$

where L_y is the simulation length in the y direction.

Vibrating media

Consider a vibrating medium with

$$\varepsilon_r = \mu_r = n = \eta_o + \eta_w \sin(\omega t) \cos(\theta_x x) \sin(\theta_y y)$$

And an initial Gaussian pulse located at the center

(a) t = 3.75

(b) t = 18.75

S at time t = 60.0000000 50 0.0120 0.0105 40 0.0090 30 0.0075 0.0060 20 0.0045 0.0030 10 0.0015 0 0.0000 10 20 30 40 50

(c) t = 41.25

(d)
$$t = 60.0$$

Summary

Innovation:

- Novel N-dimensional FVM scheme
- Redrawn link between wave speed and material-induced change of space geometry
- Generalized problem treatment
- Multidisciplinary solver with application to all wake types.

Impact:

- Fastest scheme and supports N-dimensions
- Second order accurate
- Highly scalable and 3D- ready
- Applications in photonics have been demonstrated

Questions

Thank you