{ DEVCOM

]

SOFTNET 2020

HERWIG MANNAERT, CHRIS MCGROARTY.
SCOTT GALLANT, KOEN DE COCK

October 22, 2020

Universiteit Antwerpen

Integrating two Metaprogramming Environments: An Explorative Case Study

Metaprogramming and Related Concepts

Toward Scalable Collaborative Metaprogramming

Structure of Metaprogramming Environments

Toward Integrating the Environments Overview

Conclusion =y

Integrating two Metaprogramming Environments: An Explorative Case Study

Metaprogramming and Related Concepts
* Metaprogramming

« Meta-Circularity

» Systems Integration

Overview /
Toward Scalable Collaborative Metaprogramming

Structure of Metaprogramming Environments R VA

Toward Integrating the Environments

Conclusion

Metaprogramming

* Automatic programming:
* The act of automatically generating source code from a model or template

* Generative programming
e To manufacture software components in an automated way

* Metaprogramming
 Computer programs have the ability to treat other programs as their data

* It is as old as programming itself:

System.out.println(“Hello world.”) ;

4

System.out.println(“System.out.println (\“Hello world.\”) ;") ;

DEVCOM

The Field of Metaprogramming

* Better known through names/trends like:
* Model-Driven Architecture (MDA) / Model-Driven Engineering (MDE)
* Model-Driven Software Development (MDSD)
e Low-Code Development Programs (LCDP)

* The field is still evolving and facing challenges and criticisms:
 Suitability for large-scale and mission-critical enterprise systems
* Lack of intermediate representation, pervasive concepts for DSL reuse

* Both the need and potential benefits are real
* Increase programming productivity
* Consolidate programming knowledge
e Valuable for systems engineering, modeling, simulation

DEVCOM

Concepts Relevant for Metaprogramming %

e

* Meta-Circularity can enable unified view on code and meta-code :

* Homoiconicity is specifically associated with a language that can be manipulated
as data using that language

* Meta-circularity expresses the fact that there is a connection or feedback loop
between the meta-level, the internal model of the language, and the actual
models or code expressed in the language

e Systems Integration can foster collaboration and provide value :

e Systems integration in information technology refers to the process of linking

together different computing systems and software applications, to act as a
coordinated whole

e Due to the many, often disparate, metaprogramming environments and tools,
there is a need for systems integration in metaprogramming

Z DEVCOM

Integrating two Metaprogramming Environments: An Explorative Case Study

Metaprogramming and Related Concepts

Toward Scalable Collaborative Metaprogramming

Structure of Metaprogramming Environments

Toward Integrating the Environments Overview

Conclusion =y

Vertical Integration or Metaprogramming Silos

e

Model |L

MP,

Reader classes

[Model classes

g

Control classes

]

Generator classes

U

[Code Templates
S

1

Model

MP,

Reader classes

[Model classes

g

Control classes

]

Generator classes

U

[Code Templates
S

Model

MP

n

Reader classes

[Model classes]

]

Control classes]

Generator classes]

U

[Code Templates
S

Source

On Meta-Circularity in Meta-Programming

* You also have to maintain the meta-code
e Consists of several modules
* Isin general not trivial to write

* Will face growing number of implementations:
 Different versions
* Multiple variants
 Various technology stacks

Reader classes

[Model classes]

g

[Control classes]

Generator classes

* Will have to adapt itself to: o2

* Evolutions of its underlying technology
* Which even may become obsolete

{ Code Templates

\
A\

* Meta-Circularity: meta-code that (re)generates itself N

DEVCOM

"Q

On Horizontal Integration in Metaprogramming e

] =]

Models N
= =]
Model,
) T T N N R N N e
[Code Templates, { Code Templates,
S S 7
Templates M
Code Templates; (
\ Code Templates, Code Templates,,
= . .

Source II Source LSOU;J_H Source LSou;-m Source Source I Sou(rjce S(C:Ju;ce
Code Code Code Code Code Code Code ode
Source Code ‘ j Nx V]
Source II Source Source Source II Source Source Source Source Source J
Code Code Code Code Code Code Code Code Code DEVCOM

Integrating two Metaprogramming Environments: An Explorative Case Study

Metaprogramming and Related Concepts
Toward Scalable Collaborative Metaprogramming
Structure of Metaprogramming Environments

* Normalized Systems Theory (NST) Overview

Metaprogramming Environment %
* Generative Environment Simulation Models
Toward Integrating the Environments

Conclusion

Metaprogramming Normalized Systems — Essentials ,..*

* Evolvability of information systems is crucial for organizations

* Normalized Systems Theory:
* Seeks to provide ex-ante proven approach to build evolvable software

* Founded on systems theoretic stability (Bounded-Input, Bounded-Output, or
BIBO), for the impact of changes
* NST proves a set of principles, that are necessary conditions to av0|d
instabilities or combinatorial effects: |
e Separation of Concerns
* Action Version Transparency
* Data Version Transparency
e Separation of States

* This implies fine-grained modular structure

DEVCOM

https://www.google.be/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRxqFQoTCPr47vP02MYCFXFK2wod3QEE3Q&url=https://en.wikipedia.org/wiki/Tacoma_Narrows_Bridge_(1940)&ei=GRukVbqIBvGU7Qbdg5DoDQ&bvm=bv.97653015,d.aWw&psig=AFQjCNFgsY-UbK97MVx5n58i59GipMrWaQ&ust=1436904580535458

Metaprogramming Normalized Systems — Elements

Remote Access

\ Access Control

Persistency

DEVCOM

o,

Metaprogramming Normalized Systems — Expansion &

 Element structures are needed to interconnect with CCC solutions

* Normalized Systems (NS) defines 5 types of elements, aligned with basic
software concepts:
e Data element
* Task element
* Flow element
e Connector element
* Trigger element

* Code generation is used to create instances of these elements

* Due to its simple and deterministic nature, we refer to this process as
expansion, and to the generators as expanders

Z DEVCOM

Metaprogramming Normalized Systems — Architecture

lExtend meta-model

Meta Model H'
odel

i

A4

@

Read / Write

)

Model

J

Logic

~

Define expanders
Provide templates

J

Control

View

~N

\J

~/

Q Prime Radiant

=

r\ Expander Model
Expander _\”;

1

MetaCircle
U Code Templates

Expand U QExpand

"Q
> Q’Q

%

Read / Write

ﬁ
[/v

)

[Model

]

Logic

|

Control

r

View

N

\J

~/

Application ﬁ
Z DEVCOM

Metaprogramming Normalized Systems — Meta-Model

met.democritus.elements 1'-
FlowElement

narme : String
packageMame : String
targetClass : String)
statusField: String =
workflowMName :String
archiveName : String
description: StringLong
disabled : String
component : Component[Ln01]

net.democritus.elements
TaskElementType

name : String

description : StringLong

net.democritus.elements 1-
TaskElement

name: String

packageMame : String

type: TaskElementType[Ln0l] ——
trans sactionType 1 TaskTransaction Type[Ln02]
“targetElement : DataElement[Ln01]
targetClass : String

paramClass : String

description: StringLong,

disabled : String

component : Component[Ln01]

..,
i
A

.\!!. oy

net.democritus.elements 1-
Component

| componentDependencys : ComponentDependency [Ln0S]

narme : String
fullMame : String
version: String
businessOwner : foundation.Organization[Ln01]
modelOwner : foundation.Organization[Ln01]
firstAnalyst : foundation. Member[Ln01]
modelRepository : SourceBase[Ln01]
customRepository : SourceBase[Ln01]
description: StringLong

mainScreen :String

disabled : String

application: Application[LnOg}————

componentOptions : ComponentOption[Ln05]
dataElements : DataElement[Ln05]
taskElements : TaskElement([Ln05]
flowElements : FlowElement[Ln05]
serviceElements : ServiceElement[Ln05]
valueFieldTypes : ValueFieldType[Ln0S]

|
| A

net.democritus.elemants
DataElementType

narme :5tring

description: StringLong

net.democritus.elements
DataElement

narme :5tring
packageMame : String
component : Component[Ln01]
type: DataElementType(Ln01]
status : String
description: StringLong
disabled : String
fields : Field[Ln0S]
finders : Finder[Ln05]
dataCommands : DataCommand[Ln05]

dataOptions : DataOption[Ln05]

dataStates : DataState[Ln04]
dataWaterfalls : DataWatefall[Ln04]

dataProjections : DataProjection[Ln05] |~

dataChilds : DataChild [LnD5] .

flowO ptians : Flawd ptio n[Lnds taskOptions : TaskOption[Ln05] .
ot ptionl] connectors : Connector]Ln05] SO A
net.democritus.elements 1- net.democritus.elements 1- net.democritus.elements 1- net.democritus.elements 1-
FlowQption TaskOption ComponentOption DataOption
name : String name : String name : String name :String

flowElement : FlowElement[Ln01]
flowOptionType : FlowO ptionType[Ln01]
value : String

taskElement : TaskElement[Ln01]
taskOptionType : TaskOption Type(Ln01]
value: String

component : Component[Ln01]
companentOptionType : ComponentOptionType[Ln01]
value : String

dataElement : DataElement[Ln01]
dataOptionType : DataOption Type[Ln01]
wvalue: String

.
\Q_ct.dcmocritus.clcmcnts 1'.
\\.__ Fn_ald
| name :String
type:String

fieldType : String
description: StringLong

disabled : String

isInfoField : Boolean

isListField : Boolean

listValues : String

dataElement : DataElement[Ln01]
valueField : ValueField[Ln01]
linkField : LinkField[Ln01]
fieldOptions : FieldOption[Ln05]

N
”Q‘Q

%

net.democritus.elements 1-
Finder

narme : String

description: StringLong

dataElement : DataElement[Ln01]
fieldOperatorPairs : FieldOperatorPair[Ln05]
finderOptions : FinderOption[Ln05]

net.democritus.elements
FlowOptionType

name : String

description: StringLong

net.democritus.elements
TaskOptionType

narme : String

description : StringLong

net.democritus.elements
ComponentOptionType
name : String
description : StringLong

net.democritus.elements
DataOptionType

name :String

description: StringLong

I'l'.
net.democritus.elements .'L net.democritus.elements -'L
FieldOption FinderOption
name :String name : String
field : Field[Ln0o1] finder : Finder[Ln01]

fieldOptionType : FieldOptionType[Ln01]
value: String

finderOptionType : FinderOption Type[Ln01]
value : String

net.democritus.elements
FieldOptionType

name : String

description : StringLong

net.democritus.elemants
FinderOptionType

narme :5tring.

description: StringLong

DEVCOM

Metaprogramming Simulation Models — Essentials

* The United States Army has developed and documented hundreds of
approved models for representing behaviors and systems.

* Manual translation of these models leads to:
* implementation errors and verification difficulties
* workload of incorporating these models into other environments

* A generative programming approach is being examined to
e capture models within an executable systems engineering format
* facilitate authoritative models to operate within multiple platforms
* generate software to implement those representations and behaviors
* integrate into multiple simulations regardless of programming language

DEVCOM

. . . . D¢
Metaprogramming Simulation Models — Architecture &
Government-owned Ingestion, Templating & Executable Software Many Implementations
Conceptual Models Metaprogramming

Constructive

Virtual

| Behaviors I‘ w
-] _‘ | >
Ll | Generative
]] Programming
| Models |=|= .
]

Game Engines
Service

Avoid Monolithic Systems for Better Flexibility, Simulators

Extensibility, Scalability, and Sustainment

DEVCOM

"Q

Metaprogramming Simulation Models — Interchange &
* To decouple front-end and back-end, an Interchange Format (IF) :
* allows to record models in various front-ends

* to pass these models from front-end to back-end
* enables a more horizontal integration architecture

e Synthetic Training Environment (STE) Canonical Universal Format (SCUF)

* is based on XML documents
e defined by an XML Schema Definition or XSD

* focuses on the domain elements used within the U.S. Army’s canonical
descriptions of the simulation models.

DEVCOM

Metaprogramming Simulation Models — Meta-model

TypeDefinition
(53 name: String
(54 highLevelType: String
(5 concreteTypes: String[*]

Model
(5} declares: Declare[*]
(53 functions: FunctionType[*]
(5}, datastores: DatastoreType[*]

[5

DatastoreType EnumType

EirowType: ClassType | | (5 properties: EnumeratorType[*]| | £} statements: Statement[*]

(£ keySet: Key[1..*]

Key

[E3 rowType: ClassType
(5} field: Statement

EnumeratorType
(53 name: String
(5} value: String

BlockType

(5} fragments: CodeFragment[*]

ClassType

FunctionCall
« Interface » -
CodeFragment (55 arguments: Expression[*]

Statement Declare
(54 name: String
(=5 type: TypeDefinition

[543 name: String
(£ type: TypeDefinition
(5}, expression: Expression

ConditionalBlock ElseType

(54, condition: Expression

r g 7

FunctionType
(54 name: String
(54 inputs: TypeDefinition[*]
(5} outputs: TypeDefinition[*]

WhileType

DoWhileType IfType IfElseType

ForType
(5} initial: Statement
(5 increment: Statement

(53 name: String
(5} child: Chainable

T T

Expression
(5} left: Expression
(55 right: Expression
(5, operator: String

JAN

Chainable

Variable Literal
[55 value: String
(53 type: TypeDefinition

ReservedStatment

(£} reservedWord: String
(=} expression: Expression

DEVCOM

SOLD;

Integrating two Metaprogramming Environments: An Explorative Case Study

Metaprogramming and Related Concepts
Toward Scalable Collaborative Metaprogramming
Structure of Metaprogramming Environments

Toward Integrating the Environments Overview /
* Embracing the SCUF Meta-Model

~y

\\4

« Supporting the Templating Engine

Conclusion

7
o ",
! ,
et
-
-
.

%o

Integrating two Environments — Meta-Models S

* Both metaprogramming environments:
» exhibit an horizontal integration architecture
* use XML to exchange between models and templates

* Normalized Systems environment allows to:

e define any Entity Relationship Diagram (ERD), including entities of SCUF meta-
model, e.g., Statement
* generate the meta-circular stack for these entities, including:
XML readers and writers, e.g., StatementXmlReader, StatementXmlWriter
* classes representing model instances, e.g., StatementDetails, StatementComposite
* view and control classes for create and manipulate models in a user interface
* make the models available to the templates through Object-Graph Navigation
Language (OGNL) expressions
* e.g., statement.type.name, statement.expression.operator

Z DEVCOM

Integrating two Environments — Templates

* Normalized Systems environment

* allows to activate every coding template by:
» declaring the template in an XML expander file
* defining the OGNL expressions in an XML mapping file

e provides a connector for StringTemplate templating engine

e Velocity templates of simulation models:

e can be converted to StringTemplate, but:
» effort proportional to the amount and size of templates
* additional templates would continue to create workload
* require a connector for Velocity templating engine

e seems a manageable effort
 straightforward as Velocity allows more logic

DEVCOM

Integrating two Metaprogramming Environments: An Explorative Case Study

Metaprogramming and Related Concepts

Toward Scalable Collaborative Metaprogramming

Structure of Metaprogramming Environments

Toward Integrating the Environments Overview

Conclusion =y ,
. .

Jf'. j
£l

Conclusions

* We have explored the horizontal integration between two different
metaprogramming environments

e Contributions:

* We have shown that the meta-model of another metaprogramming environment
can be embraced by our previously proposed meta-circular architecture

* We have shown that models based on other meta-model can be made available
to the coding templates without the additional development of meta-code

* Limitations:
* Not yet operational due to lack of template engine connector
* Horizontal integration needs to be deepened and broadened

DEVCOM

