
S O F T N E T 2 0 2 0

Integrating two Metaprogramming

Environments:

An Explorative Case Study

O c t o b e r 2 2 , 2 0 2 0

H E R W I G M A N N A E R T , C H R I S M C G R O A R T Y .

S C O T T G A L L A N T , K O E N D E C O C K

Integrating two Metaprogramming Environments: An Explorative Case Study

Overview

• Metaprogramming and Related Concepts

• Toward Scalable Collaborative Metaprogramming

• Structure of Metaprogramming Environments

• Toward Integrating the Environments

• Conclusion

Integrating two Metaprogramming Environments: An Explorative Case Study

Overview

• Metaprogramming and Related Concepts

• Metaprogramming

• Meta-Circularity

• Systems Integration

• Toward Scalable Collaborative Metaprogramming

• Structure of Metaprogramming Environments

• Toward Integrating the Environments

• Conclusion

• Automatic programming:
• The act of automatically generating source code from a model or template

• Generative programming
• To manufacture software components in an automated way

• Metaprogramming
• Computer programs have the ability to treat other programs as their data

• It is as old as programming itself:

System.out.println(“Hello world.”);

Metaprogramming

System.out.println(“System.out.println(\“Hello world.\”);”);

• Better known through names/trends like:
• Model-Driven Architecture (MDA) / Model-Driven Engineering (MDE)

• Model-Driven Software Development (MDSD)

• Low-Code Development Programs (LCDP)

• The field is still evolving and facing challenges and criticisms:
• Suitability for large-scale and mission-critical enterprise systems

• Lack of intermediate representation, pervasive concepts for DSL reuse

• Both the need and potential benefits are real
• Increase programming productivity

• Consolidate programming knowledge

• Valuable for systems engineering, modeling, simulation

The Field of Metaprogramming

• Meta-Circularity can enable unified view on code and meta-code :
• Homoiconicity is specifically associated with a language that can be manipulated

as data using that language

• Meta-circularity expresses the fact that there is a connection or feedback loop
between the meta-level, the internal model of the language, and the actual
models or code expressed in the language

• Systems Integration can foster collaboration and provide value :
• Systems integration in information technology refers to the process of linking

together different computing systems and software applications, to act as a
coordinated whole

• Due to the many, often disparate, metaprogramming environments and tools,
there is a need for systems integration in metaprogramming

Concepts Relevant for Metaprogramming

Integrating two Metaprogramming Environments: An Explorative Case Study

Overview

• Metaprogramming and Related Concepts

• Toward Scalable Collaborative Metaprogramming

• Structure of Metaprogramming Environments

• Toward Integrating the Environments

• Conclusion

Vertical Integration or Metaprogramming Silos

Model

Reader classes

Model classes

Control classes

Generator classes

Code Templates

Source
Code

Source
Code

Source
Code

Model

Reader classes

Model classes

Control classes

Generator classes

Code Templates

Source
Code

Source
Code

Source
Code

Model

Reader classes

Model classes

Control classes

Generator classes

Code Templates

Source
Code

Source
Code

Source
Code

MP1 MP2 MPn…

• You also have to maintain the meta-code
• Consists of several modules

• Is in general not trivial to write

• Will face growing number of implementations:
• Different versions

• Multiple variants

• Various technology stacks

• Will have to adapt itself to:
• Evolutions of its underlying technology

• Which even may become obsolete

• Meta-Circularity: meta-code that (re)generates itself

On Meta-Circularity in Meta-Programming

Reader classes

Model classes

Control classes

Generator classes

Code Templates

Model

On Horizontal Integration in Metaprogramming

Model1

Code Templates1

Source
Code

Source
Code

Source
Code

Model2

Model3

Model4

ModelN…

Code Templates2

Code Templates3

Code Templates4

Code TemplatesM…

…

Source
Code

Source
Code

Source
Code

Source
Code

Source
Code

Source
Code

Source
Code

Source
Code

Source
Code

Source
Code

Source
Code

Source
Code

Source
Code

Source
Code

Source
Code

x

=

Models

Templates

Source

N

NxM

M

Integrating two Metaprogramming Environments: An Explorative Case Study

Overview

• Metaprogramming and Related Concepts

• Toward Scalable Collaborative Metaprogramming

• Structure of Metaprogramming Environments

• Normalized Systems Theory (NST)

Metaprogramming Environment

• Generative Environment Simulation Models

• Toward Integrating the Environments

• Conclusion

• Evolvability of information systems is crucial for organizations

• Normalized Systems Theory:
• Seeks to provide ex-ante proven approach to build evolvable software
• Founded on systems theoretic stability (Bounded-Input, Bounded-Output, or

BIBO), for the impact of changes

• NST proves a set of principles, that are necessary conditions to avoid
instabilities or combinatorial effects:
• Separation of Concerns
• Action Version Transparency
• Data Version Transparency
• Separation of States

• This implies fine-grained modular structure

Metaprogramming Normalized Systems – Essentials

https://www.google.be/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRxqFQoTCPr47vP02MYCFXFK2wod3QEE3Q&url=https://en.wikipedia.org/wiki/Tacoma_Narrows_Bridge_(1940)&ei=GRukVbqIBvGU7Qbdg5DoDQ&bvm=bv.97653015,d.aWw&psig=AFQjCNFgsY-UbK97MVx5n58i59GipMrWaQ&ust=1436904580535458

Order

Persistency

Access Control

Remote Access

Invoice Payment
Element Element Element

Metaprogramming Normalized Systems – Elements

• Element structures are needed to interconnect with CCC solutions

• Normalized Systems (NS) defines 5 types of elements, aligned with basic
software concepts:
• Data element
• Task element
• Flow element
• Connector element
• Trigger element

• Code generation is used to create instances of these elements

• Due to its simple and deterministic nature, we refer to this process as
expansion, and to the generators as expanders

Metaprogramming Normalized Systems – Expansion

Expander Model

Metaprogramming Normalized Systems – Architecture

Model

Expand Application

Read / Write

Model

Logic

Control

View

Read / Write

Model

Logic

Control

View

Meta
Model

ExpandPrime Radiant

Code Templates

Expander
MetaCircle

Extend meta-model

Define expanders
Provide templates

Metaprogramming Normalized Systems – Meta-Model

• The United States Army has developed and documented hundreds of
approved models for representing behaviors and systems.

• Manual translation of these models leads to:
• implementation errors and verification difficulties

• workload of incorporating these models into other environments

• A generative programming approach is being examined to
• capture models within an executable systems engineering format

• facilitate authoritative models to operate within multiple platforms

• generate software to implement those representations and behaviors

• integrate into multiple simulations regardless of programming language

Metaprogramming Simulation Models – Essentials

Metaprogramming Simulation Models – Architecture

• To decouple front-end and back-end, an Interchange Format (IF) :
• allows to record models in various front-ends

• to pass these models from front-end to back-end

• enables a more horizontal integration architecture

• Synthetic Training Environment (STE) Canonical Universal Format (SCUF)
• is based on XML documents

• defined by an XML Schema Definition or XSD

• focuses on the domain elements used within the U.S. Army’s canonical
descriptions of the simulation models.

Metaprogramming Simulation Models – Interchange

Metaprogramming Simulation Models – Meta-model

Integrating two Metaprogramming Environments: An Explorative Case Study

Overview

• Metaprogramming and Related Concepts

• Toward Scalable Collaborative Metaprogramming

• Structure of Metaprogramming Environments

• Toward Integrating the Environments

• Embracing the SCUF Meta-Model

• Supporting the Templating Engine

• Conclusion

• Both metaprogramming environments:
• exhibit an horizontal integration architecture
• use XML to exchange between models and templates

• Normalized Systems environment allows to:
• define any Entity Relationship Diagram (ERD), including entities of SCUF meta-

model, e.g., Statement
• generate the meta-circular stack for these entities, including:

• XML readers and writers, e.g., StatementXmlReader, StatementXmlWriter
• classes representing model instances, e.g., StatementDetails, StatementComposite
• view and control classes for create and manipulate models in a user interface

• make the models available to the templates through Object-Graph Navigation
Language (OGNL) expressions
• e.g., statement.type.name, statement.expression.operator

Integrating two Environments – Meta-Models

• Normalized Systems environment
• allows to activate every coding template by:

• declaring the template in an XML expander file

• defining the OGNL expressions in an XML mapping file

• provides a connector for StringTemplate templating engine

• Velocity templates of simulation models:
• can be converted to StringTemplate, but:

• effort proportional to the amount and size of templates

• additional templates would continue to create workload

• require a connector for Velocity templating engine
• seems a manageable effort

• straightforward as Velocity allows more logic

Integrating two Environments – Templates

Integrating two Metaprogramming Environments: An Explorative Case Study

Overview

• Metaprogramming and Related Concepts

• Toward Scalable Collaborative Metaprogramming

• Structure of Metaprogramming Environments

• Toward Integrating the Environments

• Conclusion

• We have explored the horizontal integration between two different
metaprogramming environments

• Contributions:
• We have shown that the meta-model of another metaprogramming environment

can be embraced by our previously proposed meta-circular architecture

• We have shown that models based on other meta-model can be made available
to the coding templates without the additional development of meta-code

• Limitations:
• Not yet operational due to lack of template engine connector

• Horizontal integration needs to be deepened and broadened

Conclusions

QUESTIONS ?

herwig.mannaert@uantwerp.be

