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• Automatic programming:
• The act of automatically generating source code from a model or template

• Generative programming
• To manufacture software components in an automated way

• Metaprogramming
• Computer programs have the ability to treat other programs as their data

• It is as old as programming itself:

System.out.println(“Hello world.”);

Metaprogramming

System.out.println(“System.out.println(\“Hello world.\”);”);



• Better known through names/trends like:
• Model-Driven Architecture (MDA) / Model-Driven Engineering (MDE)

• Model-Driven Software Development (MDSD)

• Low-Code Development Programs (LCDP)

• The field is still evolving and facing challenges and criticisms:
• Suitability for large-scale and mission-critical enterprise systems

• Lack of intermediate representation, pervasive concepts for DSL reuse

• Both the need and potential benefits are real
• Increase programming productivity

• Consolidate programming knowledge

• Valuable for systems engineering, modeling, simulation

The Field of Metaprogramming



• Meta-Circularity can enable unified view on code and meta-code :
• Homoiconicity is specifically associated with a language that can be manipulated 

as data using that language

• Meta-circularity expresses the fact that there is a connection or feedback loop 
between the meta-level, the internal model of the language, and the actual 
models or code expressed in the language

• Systems Integration can foster collaboration and provide value :
• Systems integration in information technology refers to the process of linking 

together different computing systems and software applications, to act as a 
coordinated whole

• Due to the many, often disparate, metaprogramming environments and tools, 
there is a need for systems integration in metaprogramming

Concepts Relevant for Metaprogramming
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Vertical Integration or Metaprogramming Silos
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• You also have to maintain the meta-code
• Consists of several modules

• Is in general not trivial to write

• Will face growing number of implementations:
• Different versions

• Multiple variants

• Various technology stacks

• Will have to adapt itself to:
• Evolutions of its underlying technology

• Which even may become obsolete

• Meta-Circularity: meta-code that (re)generates itself

On Meta-Circularity in Meta-Programming 
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On Horizontal Integration in Metaprogramming
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• Evolvability of information systems is crucial for organizations

• Normalized Systems Theory:
• Seeks to provide ex-ante proven approach to build evolvable software
• Founded on systems theoretic stability (Bounded-Input, Bounded-Output, or 

BIBO), for the impact of changes

• NST proves a set of principles, that are necessary conditions to avoid 
instabilities or combinatorial effects:
• Separation of Concerns
• Action Version Transparency
• Data Version Transparency
• Separation of States

• This implies fine-grained modular structure

Metaprogramming Normalized Systems – Essentials
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Metaprogramming Normalized Systems – Elements



• Element structures are needed to interconnect with CCC solutions

• Normalized Systems (NS) defines 5 types of elements, aligned with basic 
software concepts:
• Data element
• Task element 
• Flow element
• Connector element
• Trigger element

• Code generation is used to create instances of these elements

• Due to its simple and deterministic nature, we refer to this process as 
expansion, and to the generators as expanders

Metaprogramming Normalized Systems – Expansion



Expander Model

Metaprogramming Normalized Systems – Architecture
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Metaprogramming Normalized Systems – Meta-Model



• The United States Army has developed and documented hundreds of 
approved models for representing behaviors and systems.

• Manual translation of these models leads to:
• implementation errors and verification difficulties

• workload of incorporating these models into other environments

• A generative programming approach is being examined to
• capture models within an executable systems engineering format

• facilitate authoritative models to operate within multiple platforms

• generate software to implement those representations and behaviors

• integrate into multiple simulations regardless of programming language

Metaprogramming Simulation Models – Essentials



Metaprogramming Simulation Models – Architecture



• To decouple front-end and back-end, an Interchange Format (IF) :
• allows to record models in various front-ends

• to pass these models from front-end to back-end 

• enables a more horizontal integration architecture 

• Synthetic Training Environment (STE) Canonical Universal Format (SCUF)
• is based on XML documents

• defined by an XML Schema Definition or XSD

• focuses on the domain elements used within the U.S. Army’s canonical 
descriptions of the simulation models.

Metaprogramming Simulation Models – Interchange



Metaprogramming Simulation Models – Meta-model
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• Both metaprogramming environments:
• exhibit an horizontal integration architecture
• use XML to exchange between models and templates

• Normalized Systems environment allows to:
• define any Entity Relationship Diagram (ERD), including entities of SCUF meta-

model, e.g., Statement
• generate the meta-circular stack for these entities, including:

• XML readers and writers, e.g., StatementXmlReader, StatementXmlWriter
• classes representing model instances, e.g., StatementDetails, StatementComposite
• view and control classes for create and manipulate models in a user interface

• make the models available to the templates through Object-Graph Navigation 
Language (OGNL) expressions
• e.g., statement.type.name, statement.expression.operator

Integrating two Environments – Meta-Models



• Normalized Systems environment 
• allows to activate every coding template by:

• declaring the template in an XML expander file

• defining the OGNL expressions in an XML mapping file

• provides a connector for StringTemplate templating engine

• Velocity templates of simulation models:
• can be converted to StringTemplate, but:

• effort proportional to the amount and size of templates

• additional templates would continue to create workload

• require a connector for Velocity templating engine
• seems a manageable  effort 

• straightforward as Velocity allows more logic

Integrating two Environments – Templates
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• We have explored the horizontal integration between two different 
metaprogramming environments 

• Contributions:
• We have shown that the meta-model of another metaprogramming environment 

can be embraced by our previously proposed meta-circular architecture

• We have shown that models based on other meta-model can be made available 
to the coding templates without the additional development of meta-code

• Limitations:
• Not yet operational due to lack of template engine connector

• Horizontal integration needs to be deepened and broadened

Conclusions
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