
Dipartimento di Scienze Teoriche e Applicate

Università degli Studi dell'Insubria

Software Quality Evaluation via Static Analysis and
Static Measurement: an Industrial Experience

Luigi Lavazza

Università degli Studi dell'Insubria, Varese, Italy

luigi.lavazza@uninsubria.it

The 15th International Conference on Software Engineering Advances

October 18 to October 22, 2020 - Porto, Portugal

Luigi Lavazza

Luigi Lavazza is associate professor of Computer Science at the University of

Insubria at Varese, Italy. Formerly he was assistant professor at Politecnico di

Milano, Italy. Since 1990 he cooperates with the Software Engineering group at

CEFRIEL, where he acts as a scientific consultant in digital innovation projects.

His research interests include: Empirical software engineering, software metrics

and software quality evaluation; Software project management and effort

estimation; Software process modeling, measurement and improvement; Open

Source Software.

He was involved in several international research projects, and he also served as

reviewer of EU funded projects.

He is co-author of over 170 scientific articles, published in international journals,

or in the proceedings of international conferences or in books.

He has served on the PC of a number of international Software Engineering

conferences; from 2013 to 2018 he was the editor in chief of the IARIA

International Journal On Advances in Software.

He is a IARIA fellow since 2011
2

Luigi Lavazza: research interests

Empirical software engineering

Evaluation of estimation models’ accuracy

Software metrics and software quality evaluation

Software project management and effort estimation

Software process modeling, measurement and improvement

Open Source Software.

3

Paper abstract

Business organizations need to evaluate the quality of the code delivered
by suppliers.

In this paper, we illustrate an experience in setting up and using a toolset
for evaluating code.

The selected tools perform static code analysis and static measurement,
and provide evidence of possible quality issues.

Code inspections were carried out to spot false positives.

The combination of automated analysis and inspections proved effective:
several types of defects were identified.

Based on our findings, the business company was able to learn what are
the most frequent and dangerous types of defects that affect the acquired
code: currently, this knowledge is being used to perform focused
verification activities

ICSEA 2020
Software Quality Evaluation via Static Analysis and Static

Measurement: an Industrial Experience 4

The context

The evaluation addressed two B2C portals, coded almost entirely in
Java.

ICSEA 2020
Software Quality Evaluation via Static Analysis and Static

Measurement: an Industrial Experience 5

Goals

Evaluating the quality of the products, highlighting weaknesses and
improvement opportunities.

It was deemed important to spot the types of the most frequently
recurring issues, rather than finding all the actual defects and issues.

ICSEA 2020
Software Quality Evaluation via Static Analysis and Static

Measurement: an Industrial Experience 6

Tools

Open-source (or free to use) software was to be preferred.

We looked for tools that can

Detect bad programming practices, based on the identification of
specific code patterns.

Detect bad programming practices, based on code measures (e.g.,
methods too long, classes excessively coupled, etc.).

Detect duplicated code.

Identify vulnerabilities.

ICSEA 2020
Software Quality Evaluation via Static Analysis and Static

Measurement: an Industrial Experience 7

Tools

ICSEA 2020
Software Quality Evaluation via Static Analysis and Static

Measurement: an Industrial Experience 8

The evaluation process: problem detection

ICSEA 2020
Software Quality Evaluation via Static Analysis and Static

Measurement: an Industrial Experience 9

Warnings issued by SpotBugs (by confidence)

ICSEA 2020
Software Quality Evaluation via Static Analysis and Static

Measurement: an Industrial Experience 10

Warnings issued by SpotBugs (by type)

ICSEA 2020
Software Quality Evaluation via Static Analysis and Static

Measurement: an Industrial Experience 11

Warnings issued by SpotBugs (by rank)

Rank levels:

“scariest”(1 ≤rank≤ 4)

“scary” (5 ≤rank≤ 9)

“worrying” (10 ≤rank≤ 14)

“of concern” (15 ≤rank≤ 20).

ICSEA 2020
Software Quality Evaluation via Static Analysis and Static

Measurement: an Industrial Experience 12

These warnings were
manually inspected

Results of inspecting SpotBugs warnings

Our inspections revealed several code quality problems:

The existence of problems matching the types of warning issued by

SpotBugs was confirmed.

Some language constructs were not used properly.

• E.g., class Boolean was incorrectly used instead of boolean; objects of

type String were used instead of boolean values; etc.

We found redundant code, i.e., some pieces of code were unnecessarily

repeated, even where avoiding code duplication—e.g., via inheritance or

even simply by creating methods that could be used in different places—

would have been easy and definitely convenient.

We found some pieces of code that were conceptually incorrect. The types of

defect were not of any type that a static analyzer could find, but were quite

apparent when inspecting the code.

ICSEA 2020
Software Quality Evaluation via Static Analysis and Static

Measurement: an Industrial Experience 13

Results of inspecting SpotSecBugs warnings

We inspected the most serious warnings:

the only “scary” warning

all the warnings at the highest rank of the level “troubling” (rank 10)

We found that all the warnings pointed to code that had security problems.

In many cases, SpotBugs documentation provided quite straightforward ways for

correcting the code.

ICSEA 2020
Software Quality Evaluation via Static Analysis and Static

Measurement: an Industrial Experience 14

Inspection of code elements having measures

beyond threshold

We inspected code elements having measures definitely out of the
usually considered safe ranges.

We considered the following measures as possibly correlated with
problems:

McCabe complexity

Logical Lines of Code

Response for Class (RFC).

We also looked at Coupling Between Objects, Lack of Cohesion in
Methods and Weighted Method Count, but these measures turned out to
provide no additional information

i.e., they pointed to the same classes or methods identified as
possibly problematic by the measures above

ICSEA 2020
Software Quality Evaluation via Static Analysis and Static

Measurement: an Industrial Experience 15

McCabe complexity

ICSEA 2020
Software Quality Evaluation via Static Analysis and Static

Measurement: an Industrial Experience 16

Portal 1 Portal 2

Safe zone

Problematic zone

Dangerous zone

Other code measures

When considering size, we found several classes featuring over 1000
LLOC;

the largest class contained slightly less then 6000 LLOC.

When considering RFC, we found 12 classes having RFC greater than
200.

The class with the highest RFC (709) was also the one containing the
method with the greatest McCabe complexity.

The biggest class contained the second most complex method.

These results were not surprising, since it is known that several
measures are correlated.

ICSEA 2020
Software Quality Evaluation via Static Analysis and Static

Measurement: an Industrial Experience 17

Inspections concerning out-of-range elements

Inspections revealed that the classes and methods featuring excessively
high values of LLOC, RFC and McCabe complexity were all affected by
the same problem.

The considered code had to deal with several types of services, which
where very similar under several respects, although each one had its
own specificity.

The analyzed code ignored the similarities among the services to be
managed, so that the code dealing with similar service aspects was
duplicated in multiple methods.

The code could have been organized differently using basic object-
oriented features: a generic class could collect the features that are
common to similar services, and a specialized class for every service
type could take care of the specificity of different service types.

ICSEA 2020
Software Quality Evaluation via Static Analysis and Static

Measurement: an Industrial Experience 18

Inspections concerning out-of-range elements

In conclusion, by inspecting code featuring unusual static measures, we
found design problems, namely inheritance and late binding were not
used where it was possible and convenient

ICSEA 2020
Software Quality Evaluation via Static Analysis and Static

Measurement: an Industrial Experience 19

Inspection of duplicated code

By inspecting the duplicated code spotted by
SourceMeter we found three types of
duplications:

a) Duplicates within the same file. That is, the
same ode was found in different parts of the
same file (or the same class, often).

b) Duplicates in different files. That is, the
same code fragment was found in different
files (of the same portal).

c) Duplicates in different portals. That is, the
same code fragment was found in files
belonging to different portal.

ICSEA 2020
Software Quality Evaluation via Static Analysis and Static

Measurement: an Industrial Experience 20

Design

problems, no

factorization

Versioning

problems

Inspection of duplicated code

Static measures revealed a general problem with the design of code, but
were not able to indicate precisely which parts of the code could be
factorized.

On the contrary, duplicated code detection was quite effective in
identifying all the cases where code could be factorized, with little need
of inspecting the code.

�Code clone detection added some value to inspections aiming at
understanding the reasons for ‘out of range’ measures.

ICSEA 2020
Software Quality Evaluation via Static Analysis and Static

Measurement: an Industrial Experience 21

Suggestions for improving the development

process

Two not exclusive approaches are possible.

Evaluation of code

the toolset can be used to evaluate the released code

It would be advisable that developers verify their own code via
SpotBugs and SourceMeter even before releasing it

Prevention

The practice of issue identification and verification leads to identifying
the most frequently recurring types of problems.

It is therefore possible to compile a catalogue of the most frequent
and dangerous problems: programmers could be instructed to
carefully avoid such issues.

• This could imply teaching programmers specific techniques and
good programming practices.

ICSEA 2020
Software Quality Evaluation via Static Analysis and Static

Measurement: an Industrial Experience 22

Suggested Development Process

ICSEA 2020
Software Quality Evaluation via Static Analysis and Static

Measurement: an Industrial Experience 23

Conclusions

Tool-driven inspections uncovered several types of defects.

In the process, the tools identified problems of inherently different nature,
hence it is advisable to use both types of tools.

Based on our findings, the business company was able to learn what are
the most frequent and dangerous types of defects that affect the acquired
code: this knowledge is being used to perform focused verification
activities.

The proposed approach and toolset can be useful in several contexts
where code quality evaluation is needed.

Noticeably, the proposed approach can be used in different types of
development process, including agile processes.

ICSEA 2020
Software Quality Evaluation via Static Analysis and Static

Measurement: an Industrial Experience 24

Thanks for your attention!

Questions?

ICSEA 2020
Software Quality Evaluation via Static Analysis and Static

Measurement: an Industrial Experience 25

