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Overview

 Growing demand for Switched Networks
* Challenges faced -> the need for a new approach
 Meshed Tree Algorithms and Protocols — A Clean Slate Solution

 Meshed Tree Protocol — Prototype Evaluated
e Fast convergence — with backup broadcast paths
e Optimal root redundancy
* Independent Unicast paths improves link utilization and unicast performance
e Fast Failure detection and dissemination
 Multi Rooted Meshed Trees for Data Center Networks

e Comparison with Rapid Spanning Tree Protocol



Switched Networks - Growth

e Switched Networks within organizations — customer networks

e Service Provider Networks (SPN) — to connect customer VLANSs across
locations

 Backbone Provider Networks (BPN)— connect SPNs over wider areas
to extend customer VLANS.

e Data Center Networks — to connect multiple servers, to access data
fast

e Essential - High Resiliency
* Preferred — Low Complexity, Reduced Resource Usage



Switched Network - Challenges

e Switched networks use meshed topologies to provide physical redundancy

* To carry broadcast, multicast and unicast traffic without looping switched
networks use loop-avoidance protocols

e Loop-avoidance protocols construct a logical tree topology on the physical
meshed topology

e Tree algorithms such as spanning tree or Dijkstra trees are used for the purpose
* Frames are constrained to travel along the logical tree paths
e Links under-utilized

* On network component failures, the trees need to be re-constructed
e Contributes to convergence latency — and impairs network performance

. ?p_ianning tree based protocols — have high convergence latency on root switch
ailures

* Dijkstra tree based protocols — incur high computational overhead



A Clean Slate Solution

A new tree algorithm that supports multiple pre-constructed non-
looping paths

e A simplify protocol for tree construction and faster convergence

e Protocol decouple broadcast and unicast frame forwarding paths
e improves link utilization

e Protocol provision faster failure detection and dissemination
e |solates failure impacts

The Solution: A Meshed Tree Protocol Based on the Meshed Tree Algorithm
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Meshed Tree Algorithm Makes a Difference

@\RUDT ® Dijkstra and Spanning Tree algorithm
-~ construct and mainatin one of these
trees from the Root - either Red, Blue or
(D) @ - @ @ Orange based on Link weights.
Computing the tree requires global
@ knowlegde of connectivity at each node.

Meshed Trees maintain multiple trees Meshed Trees - This

ed, blue and orange in readiness. On picture shows the three

failure of one link- fallback paths are co-existing trees distinctly.
readily available. Construction of the Notice that each node Is

three trees is based on local decision on all three trees.

made at each node.

Figure 1 Concept of Meshed Trees @ @ @



Constructing Meshed Trees in Bridged Networks
the Virtual Identifier (VID) approach
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The Broadcast Tree

* Fig. D from previous slide is
redrawn showing the Primary

PVID=11portl

GPVID 1.1.2 port 2 VID (PVID) and their ports of
ou 1) : acquisition.
_Root |l ’ e A parent stores the PVID of a

downstream switch that has its
PVID from this switch as the

PVID=12port1l
CPVID 1.2.3 port 3 PVID 1.1.2 port 1

Child PVID (CPVID).

* PVIDs and CPVIDs define the
PVID 123 port1 broadcast tree




Prototype Evaluation using the GENI testbed

* The Global Environment for Network Innovations (GENI) testbed!1]
was used for testing the Meshed Tree Protocol (MTP) against Rapid
Spanning Tree Protocol.

e Custom C implementation of MTP
e Open view Switch (OvS) has an implementation of RSTP

e 3 Topologies were created for testing
e 5 8 and 17 switches



5 Switch Topology — Several Failure Test Cases

Failure Case Failure Detection HTEEEE. SN Topology
[device(port)] Port [ p— Recovery ence /State Control
Latency Latency changes Notifications
Root(2) D 5.115s by S2 3.519s 8.634s 9 24
S1(1) R S1 Initiates 3.523s 3.523s 13 20
S1(3) D 4.030s by S2 2.999s 7.029s 3 16
S1(2) D 4.810s by S3 03.018s 7.828s 8 25
S3(1) R S3 Initiates 18ms 18 ms 5 26
S3(2) D 4.733s by S4 3.164s 7.897s 3 18
S4(1) R S4 Initiates 9ms 9ms 5 none
Failure Case Fallute LS Convergence Number of
[device(port)] Port Detection Recovery Latenc messages
P Latency Latency v &
Root(1) CPVID 1.15s 1.5ms 1.15s 2
S1(1) PVID 2.71s 0.14 ms 2.71s 3
S1(3) No Impact
S1(2) CPVID 1.8 ms 1.8 ms 4
S3(1) No Impact
S3(2) PVID 1.77 ms 1.77 ms 2
S4(1) PVID 0.7 ms 0.7 ms 2

Note vast difference in MTP vs RSTP protocol recovery
latencies ms to seconds.

RSTP

-
10/ ap| 0
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D- Designated Port, R- Root Port, A- Alternate Port
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8 Switch Topology Results

Failure Case @ Failed Failure Detection HTEEEE. Convergence ERLEE|  UEEE L
. Recovery /State Control
[device(port)] Port role Latency Latency e ..
Latency changes | Notifications
RSTP
Root(1) D 5.037s by S1 3.021s 8.058s 22 75
S1(1) R S1 initiates 3.032s 3.032s 19 68
S1(2) D 4.023s by S2 3.005s 7.028s 3 37
s1(3) D 5.206s by S3 3.027s 8.233s 13 59
S4(1) R S4 initiates 2.528s 2.528s 15 72
S4(2) D 5.017s by S4 3.004s 8.021s 3 37
S4(3) D 5.526s by S6 3.014s 8.540s 6 30
S5(1) R S5 initiates 3.525s 3.525s 15 40
S5(2) D 4.199s by S7 3.012s 7.211s 6 35
S5(3) D 5.018s by S6 3.005s 8.023s 3 39
S7(2) R S7 initiates 12 ms 12 ms 3 36
Failure Case Faﬂur:e AL Convergence| Number of
[device(port)] Port Detection Recovery Latency messages
Latency Latency MTP -

Root(1) CPVID 1.740s 14.6ms 1.74 6 3 Paths Stored
S1(1) PVID 17ms 17ms 4 at every switch
S1(3) CPVID 1.024s 15ms 1.024 5 in order of
s4(1) PVID 6ms 0.006 4 preference
S4(3) CPVID 2.407s 7ms 2.407 4
S5(1) PVID 2.290s <1ms 2.29 4
S5(3) CPVID 1.046s 5ms 1.046 3
S7(2) PVID 2.756s <1ms 2.756 0




17 Switch Topology Results - RSTP

Failure Case Failed Failure Detection Protocol |Converge Port Role Topology
[device(port)] Port I — Recovery nce /State C-o‘ntrc.)I
role Latency | Latency | changes  Notifications
Root (1) D 4.501s by S3 3.462s 7.963s 26 100
S1(1) D 5.024s by S4 3.010s 8.034s 3 "  WELY WY LY
S1(2) D 4.086s by S3 3.028s 7.112s 10 80 o
S1(3) R S1 Initiates 40ms 40ms 20 110 ':.
S7(2) R S7 Initiates 24ms 24ms 3 90 .
S7(3) D 4.680s by S9 3.019s 7.699s 6 85 E
S8(1) D 3.231s by S8 3.000s 6.231s 3 84 E
S8(2) D 3.998s by S10 3.001s 6.999s 3 84 .E
S8 (3) R S8 Initiates 32ms 32ms 10 106 E ‘
S14 (1) D 4.466s by S10 3.007s 7.473s 3 93 h“‘
514 (2) R 514 Initiates 0.025 | 25ms 3 100 ik e eceaasicaie sncentie®
S15 (2) R S15 Initiates 3.054s 3.054s 30 153 Note spanning tree paths
S15 (4) D 5.475s by S11 3.011s 8.486s 3 80
$16 (1) R S16 Initiates 15ms 15ms 5 88




17 Switch Topology Results - MTP

Failure Case Failure Detection Protocol Convergen Number of
[device(port)] Port Latency Recovery ce Latency, messages
Latency
Root (1) CPVID 2.763s-S2 36ms 2.763 9
S1(1) NO IMPACT
S1(3) CPVID 2.726s -S3 5ms 2.726 2
S1(2) PVID - 11ms 11ms 4
S7(1) NO IMPACT
S7(2) NO IMPACT
S7(3) PVID 5.4ms 5.4ms 2
S8 (2) NO IMPACT
S8 (3) PVID 2.450-S6 7ms 2.45
S14 (2) PVID 1.911-512 6ms 1.911
S14 (4) NO IMPACT
S15 (3) PVID 12ms 12ms
S15 (4) CPVID 2.453s5-516 3ms 2.453
S16 (1) PVID 2.946s- S15 6ms 2.946
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Only Broadcast Tree Shown

MTP broadcast tree covers all switches



Optimal Root Redundancy
with Meshed Tree Protocol



Two Root Implementation with MTP

Root2 predesignated and assigned VID =2 pyp=11 m b=z
Two trees — red and green. (Meshing 2 < 2
within each tree not shown)

Each tree constructed in a manner similar
to the explanation in slide 7

Default root is Root1

Root1 fails — Root2 and green tree takes
over

PVID=1.1
Rootl predesighated and assigned VID =1 Vmﬂﬂl__lg ]

1

E7PV|D =112
Zm PVID=2.2
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Root Failure Scenario (RSTP vs MTP)

PVID = 2.1 (P1)

1 2
Root2 VID=2 PVID=1.2 (P1)
pvip=11(Pn 1 1 PVID=23(P3)

3

3 2

PVID=2.3.3 (P1)

PVID=2.2 (P1
(P1) PVID = 1.2.2 (P2)

PVID = 1.1.2 (P2)

=

RSTP: On root switch failure, tree is split into two MTP: On Root1 switch failure. Root2 and S2 detect
Each segment declares a root independently for failure first. Remove VIDs from Rootl.

that segment. Root2 and S2 inform their neighbors.

Race conditions to resolve a unique root can delay Red tree is pruned and all switches loose VIDs
recovery significantly from Rootl.

All switches fallback to VIDs from Root?2.

Failure recovery is very fast.
16



Root Failure Performance

e MTP Failure Detection Time

e Switches take action on missing one hello

e RSTP Failure Detection Time * Hello intervals of 0.5 sec tested
e Based on missing 3 hellos by neighbors e MTP’s hysteresis approach and the backup VIDs
* Hello interval controlled by network diameter avoid flooding the network on false failure
detection

e RSTP Root Election Time

. . . e MTP has no root election
* All switches collaboratively elect a new root switch

e Required number of roots are pre-designated.

* RSTP New Tree Construction Time e Depends on the downtime acceptable by the
e All switches then construct a new tree from the new network
root ) .
e MTP New Tree Shift Time
Test Topologies: * On the failure of the primary tree all switches shift

. . . to the meshed tree from the secondary root.
e 5switches with 5 clients

e 10 switches with 10 clients

e 17 switches with 10 clients Broadcast Traffic Impact (MTP and RSTP):

. Lost frames,
. Duplicated frames,
. Out-of-Sequence frames



Log Base 10 Scale

The 5-Switch 5-Clients Topology - Performance RSTP vs MTP
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The 10-Switch 10-Clients Topology
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The 17-Switch 10-Clients Topology
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Unicast Frame Forwarding with MTP

* MTP does not block any ports from forwarding frames
e Unicast frames can use paths independent of broadcast tree paths

 Multiple paths to reach host devices are stored in the switches
* On the failure of the first path, next path is ready for use
e Very low failure recovery latency
e Low loss in unicast frames

e Improved link utilization as unicast frames use paths not used by broadcast
frames

e Unicast frames take shorter paths
e Current Implementation stores two paths for every host device
e Switches populate a host address table (HAT)
e Switches advertise any changes to their HAT
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MTP in Tree Structured Data Center Networks

e Data Center Networks (DCNs) support multiple clusters, where a
cluster supports hundreds of racks, and each rack supports tens of
servers

e Servers communicate with each other
e Desired high rates with minimum hops

* DCN should behave as huge non-blocking switch

e Current Direction — high redundancy topologies and use of existing
routing protocols, equal cost multi path routing ....

 Meshed Tree Protocols can improve the performance of tree
structured DCNs while reducing the operational complexity and
redundancy




Multi Rooted Meshed Trees on FAT Tree Architectures
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MTP VIDs can be used to provide the routing addresses for Core (C) switches, aggregate (A) switches, Edge (E) switches
and servers in the FAT Tree architecture — this voids the need for routing protocols and IP addresses

e Core switches are assigned unique VIDs 1, 2, 3 etc.

e All other switches automatically get their routable addresses (VIDs)

e Each device has multiple VIDs and thus multiple paths
Using a single protocol - the MTP, the following functions can be achieved

e Address assignments to all devices

e Caching of VIDs to server addresses

e Unicast traffic forwarding between servers

e Broadcast traffic forwarding

* Load balancing using the multiple VID paths 24



Multi Rooted Meshed Trees for Tree based DCNs

 Meshed Trees can be adapted for any tree based DNC architecture

 Significant performance improvements can be achieved by
connecting the core switches, as MTP VIDs will not allow for looping

of frames
e Study — ongoing



