RIT

Meshed Trees for Resilient Switched Networks

Peter Willis [pjw7904@rit.edu] Nirmala Shenoy, PhD [nxsvks@rit.edu]

Research Motivation

- Correctly forwarding data so that participating nodes can freely exchange information is the core goal of a computer network.
- Network functionality is more crucial than ever, especially during the current SARS-CoV-2 pandemic.
 - Failures of even a couple seconds can cause issues.
- Loop avoidance protocols are critical for the valid transmission of data in switched networks and as such serves as the focus of this research.

Loop-Avoidance Protocols Overview

- Network users require the dataforwarding capabilities provided by IEEE 802.3 Ethernet^[1] and IEEE 802.1D^[2] networks.
- Loop-avoidance protocols allow traffic to broadcast on a computer network without duplicating and infinitely forwarding data between nodes.

[1] "IEEE Standard for Ethernet," IEEE Std 802.3-2018 (Revision of IEEE Std 802.3-2015), 2018.

[2] "IEEE Standard for Local and metropolitan area networks: Media Access Control (MAC) Bridges," IEEE Std 802.1D-2004 (Revision of IEEE Std 802.1D-1998), 2004.

The Research Contribution

 The Meshed Tree Protocol (MTP), a proposed standard for use in switched networks, is our novel contribution to the loop-avoidance space.

- MTP does not block or disable links when creating forwarding paths for broadcast traffic.
 - Non-broadcast traffic has access to the entire network.

Dijkstra and Spanning Tree algorithm

construct and mainatin one of these

trees from the Root - either Red, Blue or

Orange based on Link weights.

Computing the tree requires global

Root

Е

В

Meshed Trees for Resiliency and Fast Recovery

made at each node.

knowlegde of connectivity at each node. (E) Meshed Trees - This Meshed Trees maintain multiple trees picture shows the three red, blue and orange in readiness. On failure of one link- fallback paths are co-existing trees distinctly. Notice that each node is readily available. Construction of the three trees is based on local decision on all three trees.

(в)

Root (E) [C]В (в) E) (D)

Figure 1 Concept of Meshed Trees

Root

Rapid Spanning Tree Protocol (RSTP) Tree Construction

- A spanning tree is logically constructed on the network.
- Uses a series of tie breakers to determine the role and state of each interface.
- A "Hello time" of 2 seconds is used as a heartbeat.

MTP Overview

- Uses virtual identifiers (VIDs) to describe a node's place in the meshed tree.
- A Root offers its VID to its neighbors.
- Nodes that have acquired VIDs offer VIDs to their neighbors.

Prototype Evaluation

- Comparing the performance of an MTP implementation against an RSTP implementation.
 - Custom C implementation of MTP
 - OvS has an implementation of RSTP
- 3 Topologies were created for testing
 - 5, 8, and 17 nodes
- Tests were conducted on topologies created on the Global Environment for Network Innovations (GENI) Testbed^[3]

[3] M. Berman, J. S. Chase, L. Landweber, A. Nakao, M. Ott, D. Raychaudhuri, R. Ricci, and I. Seskar, "Geni: A federated testbed for innovative network experiments," Computer Networks, vol. 61, pp. 5 – 23, 2014. Special issue on Future Internet Testbeds – Part I.

5 Node Topology Results

Case	Port	FDT	PRT	СТ	PRS	TCNs
Root(2)	D	5.115s by S2	3.519s	8.634s	9	24
S1(1)	R	S1 Initiates	3.523s	3.523s	13	20
S1(3)	D	4.030s by S2	2.999s	7.029s	3	16
S1(2)	D	4.810s by S3	03.018s	7.828s	8	25
S3(1)	R	S3 Initiates	18ms	18 ms	5	26
S3(2)	D	4.733s by S4	3.164s	7.897s	3	18
S4(1)	R	S4 Initiates	9ms	9 ms	5	none

Table 1: RSTP Convergence Results (5 Node Topology)

Case	Port	FDT	PRT	СТ	Messages	
Root(1)	CPVID	1.15s	1.5 ms	1.15s	2	
S1(1)	PVID	2.71s	0.14 ms	2.71s	3	
S1(3)	No Impact					
S1(2)	CPVID		1.8 ms	1.8 ms	4	
S3(1)	No Impact					
S3(2)	PVID		1.77 ms	1.77 ms	2	
S4(1)	PVID		0.7 ms	0.7 ms	2	

Table 2: MTP Convergence Results (5 Node Topology)

RSTP

MTP

8 Node Topology Results

Case	Port	FDT	PRT	СТ	PRS	TCN
Root(1)	D	5.037s by S1	3.021s	8.058s	22	75
S1(1)	R	S1 initiates	3.032s	3.032s	19	68
S1(2)	D	4.023s by S2	3.005s	7.028s	3	37
S1(3)	D	5.206s by S3	3.027s	8.233s	13	59
S4(1)	R	S4 initiates	2.528s	2.528s	15	72
S4(2)	D	5.017s by S4	3.004s	8.021s	3	37
S4(3)	D	5.526s by S6	3.014s	8.540s	6	30
S5(1)	R	S5 initiates	3.525s	3.525s	15	40
S5(2)	D	4.199s by S7	3.012s	7.211s	6	35
S5(3)	D	5.018s by S6	3.005s	8.023s	3	39
S7(2)	R	S7 initiates	12 ms	12 ms	3	36

Table 3: RSTP Convergence Results (8 Node Topology)

Case	Port	FDT	PRT	СТ	Messages
Root(1)	CPVID	1.740s	14.6ms	1.74	6
S1(1)	PVID		17ms	17ms	4
S1(3)	CPVID	1.024s	15ms	1.024	5
S4(1)	PVID		6ms	0.006	4
S4(3)	CPVID	2.407s	7ms	2.407	4
S5(1)	PVID	2.290s	< 1ms	2.29	4
S5(3)	CPVID	1.046s	5ms	1.046	3
S7(2)	PVID	2.756s	< 1ms	2.756	0

Table 4: MTP Convergence Results (8 Node Topology)

RSTP

MTP

17 Node Topology Results - RSTP

Case	Port	FDT	PRT	СТ	PRS	TCN
Root (1)	D	4.501s by S3	3.462s	7.963s	26	100
S1 (1)	D	5.024s by S4	3.010s	8.034s	3	80
S1 (2)	D	4.086s by S3	3.028s	7.112s	10	80
S1 (3)	R	S1 Initiates	40ms	40ms	20	110
S7 (2)	R	S7 Initiates	24ms	24ms	3	90
S7 (3)	D	4.680s by S9	3.019s	7.699s	6	85
S8 (1)	D	3.231s by S8	3.000s	6.231s	3	84
S8 (2)	D	3.998s by S10	3.001s	6.999s	3	84
S8 (3)	R	S8 Initiates	32ms	32ms	10	106
S14 (1)	D	4.466s by S10	3.007s	7.473s	3	93
S14 (2)	R	S14 Initiates	0.025	25ms	3	100
S15 (2)	R	S15 Initiates	3.054s	3.054s	30	153
S15 (4)	D	5.475s by S11	3.011s	8.486s	3	80
S16 (1)	R	S16 Initiates	15ms	15ms	5	88

17 Node Topology Results - MTP

Case	Port	FDT	PRT	СТ	Messages	
Root (1)	CPVID	2.763s –S2	36ms	2.763	9	
S1 (1)	NO IMPACT					
S1 (3)	CPVID	2.726s -S3	5ms	2.726	2	
S1 (2)	PVID	-	11ms	11ms	4	
S7 (1)	NO IMPACT					
S7 (2)	NO IMPACT					
S7 (3)	PVID 5.4ms 5.4ms 2					
S8 (2)	NO IMPACT					
S8 (3)	PVID	2.450-S6	7ms	2.45	3	
S14 (2)	PVID	1.911 -S12	6ms	1.911	2	
S14 (4)	NO IMPACT					
S15 (3)	PVID		12ms	12ms	5	
S15 (4)	CPVID	2.453s -S16	3ms	2.453	2	
S16 (1)	PVID	2.946s- S15	6ms	2.946	1	

Table 6: MTP Convergence Results (17 Node Topology)

Please reach out with questions