Data Privacy For AI Fraud Detection Models

A Framework For GDPR Compliant AI

Authors: Kadir Ider and Andreas Schmietendorf
Presenter: Kadir Ider, Delivery Hero SE, kadir.ider@deliveryhero.com
Date: October 14, 2020
Kadir Ider
Delivery Hero SE
Berlin, Germany
email: kadir.ider@deliveryhero.com
Global data protection manager with a background in business intelligence and process management and doctoral candidate with focus on technology compliance

Prof. Dr. Andreas Schmietendorf
Berlin School of Economics and Law
Berlin, Germany
email: andreas.schmietendorf@hwr-berlin.de
Professor for business informatics with focus on system development, implementation of integration architectures, quality assurance of software development based on metrics
Common buzzwords of our research projects
1. Topic Relevance
2. Research Development & Gaps
3. Data Protection and Privacy
4. AI Compliance Framework
5. Use Case: Fake Reviews
6. Project Milestones
1. Topic Relevance

Economic and strategic importance of compliant AI models

- Financial damage in the US is estimated to amount to USD 42 billion, with a large fraction contributed by cybercrime
- False positive fraud detection three times higher than the detection of true positive (USD 120 billion)
- 50% of businesses experienced fraud within a 24 months period, of which 50% employ AI for fraud detection
- Effective algorithms require adequate input data, incl. personal identifiers

Goals and challenges:
- Increasing detection accuracy and decreasing false positive
- Minimize monetary losses and accelerate business
- Manage the trade-off between privacy and accuracy
- Improve processing transparency and reduce blackbox problem
- Manage data protection by design and by default, in accordance with Art. 25 GDPR
- Promote principles relating to processing of personal data

400 GDPR fines due to non-compliance

- Non-compliance with data processing principles and data breach obligations (△)
- Insufficient legal basis for data processing (□)
- Insufficient technical and organisational measures to ensure information security (○)

2. Research Development & Gaps

Fraud detection segmentation

- **Blacklists**: reactive, static characteristic
- **Rule engines**: somewhat proactive, partially reactive, high maintenance
- **AI solutions**: proactive, prediction accuracy and multitude of input features, transparency
- **Common fraud activities**: identity theft, account takeovers, abuse of promotions, fake reviews or -listings

Research of AI based fraud detection models

- Major focus on development, assessment of features, comparison of fraud detection algorithms performance
- Comparison fraud detection algorithms performance
- Assessment of elements of trustworthiness in the usage of AI
- Classification techniques and improving AI models prediction accuracy

Research Gap from a compliance perspective

- Transparency and accountability for PII adherent to the GDPR marginal
- Technology introduces new risks to data but more importantly to individuals,
- Development of an AI privacy framework for AI models reduce present shortcomings and improve the accountability requirements pursuant to Art. 5 (2) GDPR
3. Data Protection and Privacy

Data Protection

- Legal mechanism (e.g. GDPR)
- Ensures lawful processing
- Basis for data privacy
- Not individual centric, i.e. one “umbrella” for all individuals

Data Privacy

- Defines guidelines for purpose and means of processing
- Ensures user rights (to control own data)
- It is a right of every individual, i.e. “umbrella” for each person
4. AI Compliance Framework

Key elements

- AI privacy design framework enhances an already existing DPMS
- Supporting privacy preserving design of AI models
- Foundation for guidelines and maturity assessments (audit function)
- Guarantees transparent processing throughout the data lifecycle, by design (Art. 25 GDPR)
- Each element is a standalone feature

Exemple: AI accountability principles

- Pursuant to Art. 5, 13, 14 and Recital 60 GDPR
- Fairness and transparency in profiling
- Accuracy (of used data)
- Data minimization and purpose limitation
5. Use Case: Fake Reviews

Takeaways:

Organizational challenges: Understanding and considering the entire data lifecycle in the AI compliance documentation goes beyond an isolated view on the algorithms functionality. Holistic view decreases the risk of non-compliance, as the entire data flow must be compliant.

Algorithmic pitfalls: Performance of an algorithm has immediate impact on the privacy. Overtraining or inherent discrimination, e.g. due to market-specific parameters, can lead to non-compliance with data protection requirements.
6. Project Milestones

- **Oct. 2020**: Summary of interim research results and prep for ICDS 2020
- **Nov. 2020**: Identification of use cases
- **Dec. 2020**: Presentation of framework and generating insights from feedback
- **Jan. 2021**: Testing and adjustment of framework
- **Jul. 2021**: Publishing insights
Questions & Feedback: ICDS 2020

Submit your request here