Reference Detection for Off-road Self-Driving Vehicles using Deep Learning

Marcelo Eduardo Pederiva

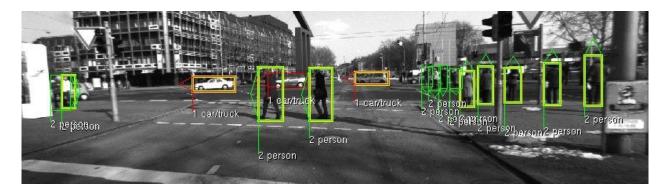
School of Electrical and Computer Engineering University of Campinas, Brazil Email: *marcelopederiva@gmail.com* Ely Carneiro de Paiva

School of Mechanical Engineering University of Campinas, Brazil Email: *elypaiva@fem.unicamp.br*

Reference Detection for Off-road Self-Driving Vehicles using Deep Learning

Marcelo Eduardo Pederiva holds a Bachelor's degree in Physics, from the Institute of Physics Gleb Wataghin - University of Campinas (Unicamp)/Brazil and a Master's degree in Mechanical Engineering -Unicamp/Brazil. At present, he has three years of experience in autonomous vehicles and the last two years in Machine Learning programming. The presenter, currently, is a Ph.D. student at the School of Electrical and Computer Engineering - Unicamp/Brazil, continuing the research and contributions in the autonomous vehicles field.

Marcelo Eduardo Pederiva


Introduction

Self-Driving Car Perception

Urban areas

- Traffic signs
- Traffic Light Colors
- Identification of pedestrians and cars
- Identification of lane lines

Introduction

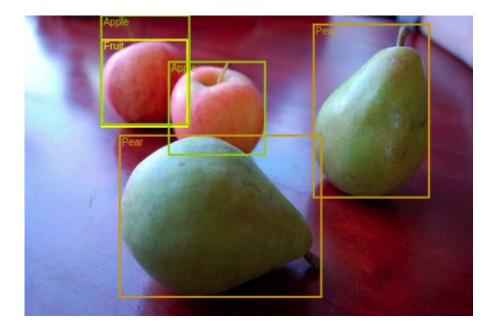
Self-Driving Car Perception

Urban areas

- Absence of traffic signs
- Imperfect terrain
- Eventual appearances of animals

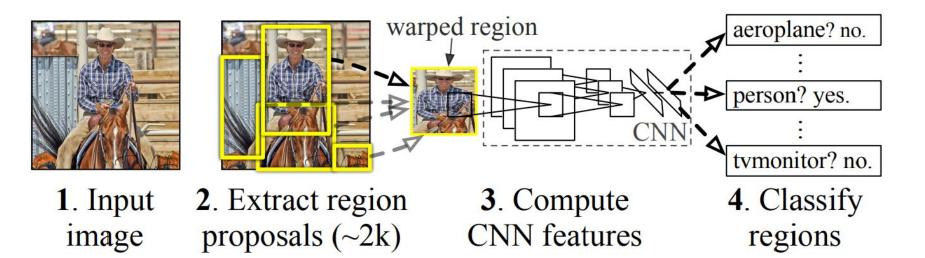
Introduction

Localization

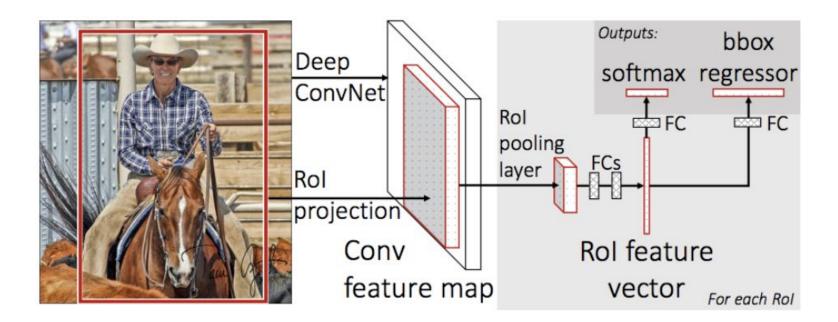

Global

Local

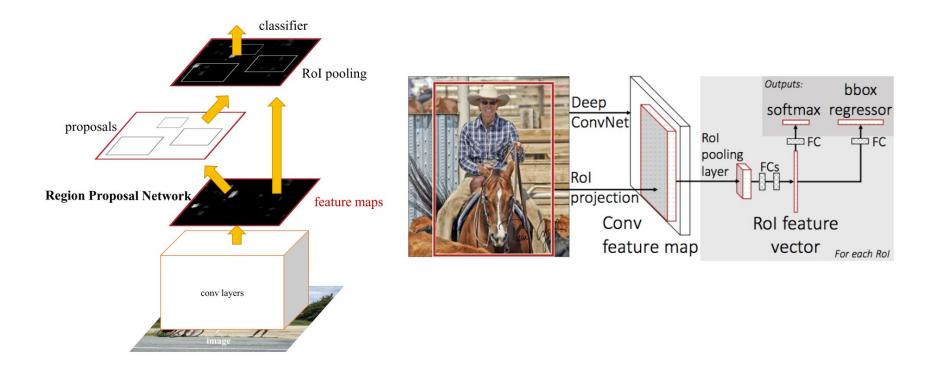
Object Detection



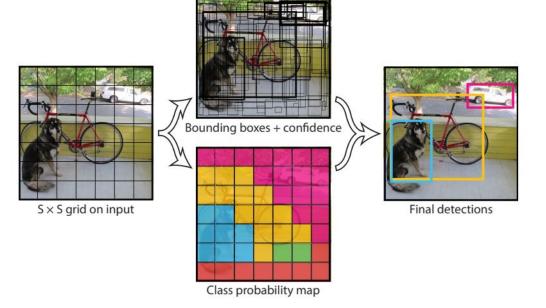
Detection Models


Model	Train	Test	mAP	FLOPS	FPS
SSD300	COCO trainval	test-dev	41.2		46
SSD500	COCO trainval	test-dev	46.5		19
YOLOv2 608x608	COCO trainval	test-dev	48.1	62.94 Bn	40
Tiny YOLO	COCO trainval	test-dev	23.7	5.41 Bn	244
SSD321	COCO trainval	test-dev	45.4	s , e	16
DSSD321	COCO trainval	test-dev	46.1		12
R-FCN	COCO trainval	test-dev	51.9		12
SSD513	COCO trainval	test-dev	50.4		8
DSSD513	COCO trainval	test-dev	53.3		6
FPN FRCN	COCO trainval	test-dev	59.1		6
Retinanet-50-500	COCO trainval	test-dev	50.9		14
Retinanet-101-500	COCO trainval	test-dev	53.1		11
Retinanet-101-800	COCO trainval	test-dev	57.5		5
YOLOv3-320	COCO trainval	test-dev	51.5	38.97 Bn	45
YOLOv3-416	COCO trainval	test-dev	55.3	65.86 Bn	35
YOLOv3-608	COCO trainval	test-dev	57.9	140.69 Bn	20
YOLOv3-tiny	COCO trainval	test-dev	33.1	5.56 Bn	220
YOLOv3-spp	COCO trainval	test-dev	60.6	141.45 Bn	20

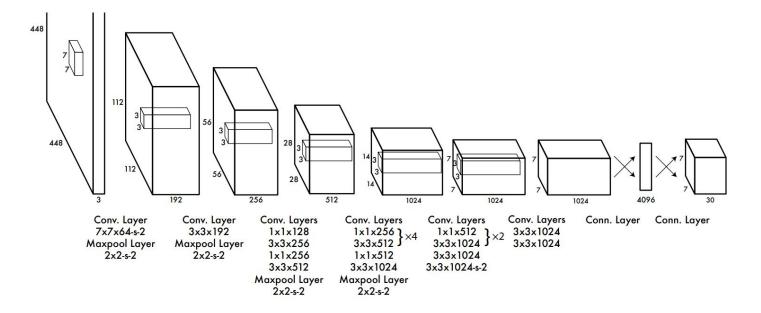
Detection Frameworks	Train	mAP	FPS
Fast R-CNN [5]	2007+2012	70.0	0.5
Faster R-CNN VGG-16[15]	2007+2012	73.2	7
Faster R-CNN ResNet[6]	2007+2012	76.4	5
YOLO [14]	2007+2012	63.4	45
SSD300 [11]	2007+2012	74.3	46
SSD500 [11]	2007+2012	76.8	19
YOLOv2 288×288	2007+2012	69.0	91
YOLOv2 352×352	2007+2012	73.7	81
YOLOv2 416×416	2007+2012	76.8	67
YOLOv2 480×480	2007+2012	77.8	59
YOLOv2 544 \times 544	2007+2012	78.6	40


Faster R-CNN R-CNN

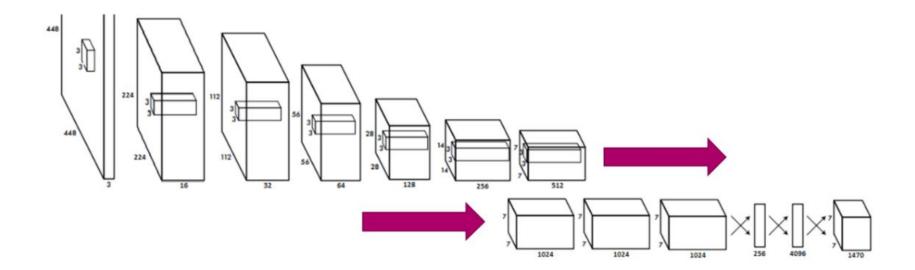
Faster R-CNN Fast R-CNN


Faster R-CNN

YOLO (You Only Look Once)

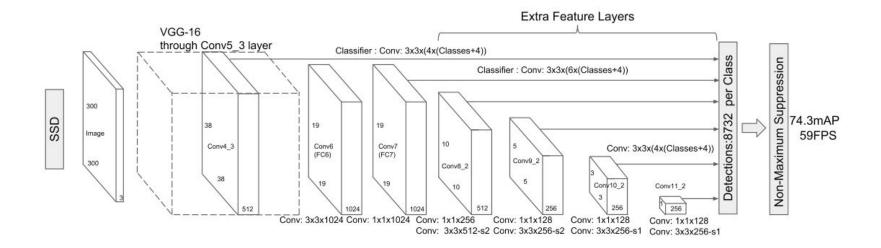

- Grid S X S
- B Bounding boxes in each cell
- C Number of classes

 $S \times S \times (B*5+C)$


YOLO (You Only Look Once)

Regular YOLO

YOLO (You Only Look Once)


Fast (Tiny) YOLO

YOLO (You Only Look Once) YOLOv2

	YOLO								YOLOv2
batch norm?		\checkmark							
hi-res classifier?			\checkmark						
convolutional?				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
anchor boxes?				\checkmark	\checkmark				
new network?					\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
dimension priors?						\checkmark	\checkmark	\checkmark	\checkmark
location prediction?						\checkmark	\checkmark	\checkmark	\checkmark
passthrough?							\checkmark	\checkmark	\checkmark
multi-scale?								\checkmark	\checkmark
hi-res detector?									\checkmark
VOC2007 mAP	63.4	65.8	69.5	69.2	69.6	74.4	75.4	76.8	78.6

SSD (Single Shot Detection)

SSD (Single Shot Detection)

				Network	Top 1	Params	MAdds	CPU
Model	ImageNet	Million	Million	MobileNetV1	70.6	4.2M	575M	113ms
<u></u>	Accuracy	Mult-Adds	Parameters	ShuffleNet (1.5)	71.5	3.4M	292M	-
1.0 MobileNet-224	70.6%	569	4.2	ShuffleNet (x2)	73.7	5.4M	524M	-
GoogleNet VGG 16	69.8% 71.5%	1550 15300	6.8 138	NasNet-A	74.0	5.3M	564M	183ms
	11.570	10000	150	MobileNetV2 MobileNetV2 (1.4)	72.0 74.7	3.4M 6.9M	300M 585M	75ms 143ms

SSD (Single Shot Detection)

Method	mAP	FPS	# Boxes	Input resolution
SSD300	74.3	46	8732	300×300
SSD512	76.8	19	24564	512×512

Training Step

- Faster R-CNN
- Fast YOLOv2
- SSD300

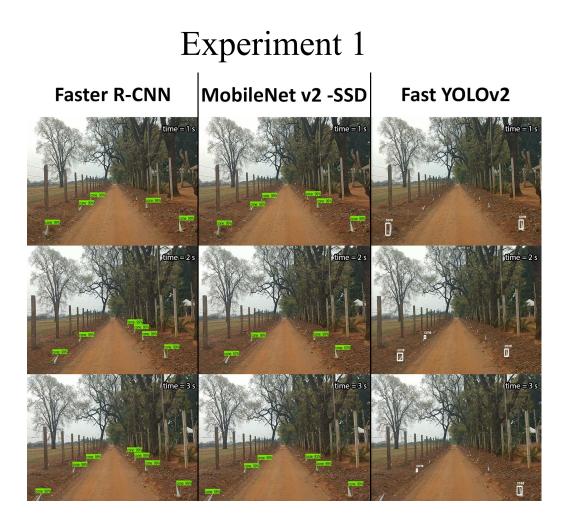
Accuracy

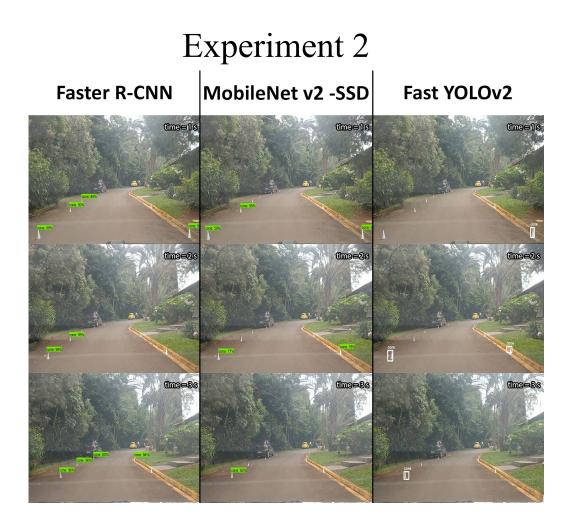
- Localization Loss
- Video test

Response time

• Mean of the time process in 10 images

Training Step


- Gpu Nvidia Geforce 1060 3GB
- CPU Intel i5-8500u
- Windows 10



Training Step

Models	Training	Localization Loss
Faster R-CNN	296 images	0.017
Fast YOLOv2	296 images	1.500
MobileNetv2 SSD300	296 images	0.258

Results

Models	Training (images)	Localization Loss	Mean Process Time (seconds)	FPS
Faster R-CNN	296	0.017	3.14	00.3
Fast YOLOv2	296	1.500	0.07	14.3
MobileNetv2 SSD300	296	0.258	1.41	00.7

Conclusion

Faster R-CNN

Mobilenetv2 SSD300

Fast YOLOv2

- Slow detection, but accurate (Faster R-CNN)
- Fast detection with bad precision (Fast YOLOv2)
- Accurate detection with a intermediary response time (SSD300)
- Merge two methods for applications (Fast YOLOv2 e SSD300)

Thank You