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Motivation: Quantum Computing

“A Quantum computer will operate differently from a Classical one.
It will be involved w physical systems on an atomic scale,

eg atoms, photons, trapped ions, or nuclear magnetic moments”

|
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... R. Feynman 40 years ago

Quantum

Gate '\/ S

Unitary |:> Reversible

Decoherence 1s the loss of information from a system

into the environment. Entanglements are generated

between the system and environment, which have the
effect of sharing quantum information with—or

transferring it to—the surroundings Reduced with Infinite Dimensional Direct
Adaptive Control
(And Quantum Error Correction)




Quantum Basics
happens

(Dirac & Von Neumann

bounded /unbounded
self —adjoint

Observable A: X —2mad

Orthonormal
Higen —Basis for X

AX = kz_;/mk gx,g%)qﬁlg = kz_;/mkpkx & o (A) =44, Ay, Ay

R x Observed
| Values of A

Pure States: ¢, elgenfunctions of A

State ¢ € X complex infinite-dimensional separable Hilbert Space:

(6,9)=1orlp=1= ¢ = c.o& 6 = Je.| =1

"A (mixed) state is alinear combination of pure states"
Special Case: Quantum SPIN Systems are FINITE Dimensional




Dynamics: Schrodinger Wave Equation

¢ € X complex Hilbert Space

0

k=1

ih%z H, ¢ Discrete Spectrum o (H,) = {4}

e
Hamiltonian Energy
Operator

=90 = Ug) #0)=e""3(0)=Y e * (90,4, with (4,4) =0,

Unitary Group

||</5(t)||2 = Probability Distribution for the Energy
in the Quantum State ¢(t) = ¢(t)] =||¢(0))|

> - S Marginally
= ..|[¢(t)|” = Probability Distribution for the Energy Stable

In the Quantum State ¢(t)
= ¢V = ¢ (O



Quantum Measurement

The interpretation of
Quantum Measurement
1s still a _controversial
part of Quantum Theory

Entanglement

X =X®X,,

A quantum measurement is an
entanglement with the

environment ( measuring
device)

Back Action




@31 “Simplicity” via Infinite Dimensional Space

%
[ OX

= Ax+ Bu+T'ug; A generates a C, —semigroup U (t)

Bu :ihui
X(0) :_XO e D(A)c X

.
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ky=CX:[(Cl,X) (C,,X) .. (Cm’X)]*;b.,CjED(A) }7
= X(t,w,) =U (t)%,; vt >0
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Evolution J. Wen & M.Balas, “Robust Adaptive
in X Control in Hilbert Space ”,
J. Mathematical. Analysis and

. Applications, Vol 143, pp 1-
C, —Semigroup of Bounded OperatorsU (t) : 26,1989.

(U (t+5) =U(t)U(s) (semigroup property) J- Wen & M.Balas ,"Direct Model
d Reference Adaptive Control in Infinite-
. . Dimensional Hilbert Space," Chapter in
—U (t) = AU (t) =U (t) A( A generateSU(t)) Applications of Adaptive Control
dt Theory, Vol.11,
U (t)xo ——> X% (continuousat t = 0) K. S. Narendra, Ed., Academéc Press,
. 1987




Semigroups

[ Closed Linear }
Operator

OX
Solvel ot = > = X(t) =U (1),
X(0) = x, € D(A)

C, —Semigroup
U (t) : X — X bounded operatorst > 0
U (t)x— X

t—>0+

Generator : Ax =lim with D(A) = {x/lim,_,,. exists }densein X

t—>0+

LU (t)) = (Al — A" = R(1, A) Resolvent Operator
LL(R(A, A) =U (t)

LaPlace Transform {




Spectrum of A

Resolvent Set p(A) ={1/R(A, A): X — X bounded linear op on X}
SpeCtrum G(A) = p(A)C — Gpoint (A) - Gcont (A) - Gresidua] (A)

G oo (A) = A1 A — AisNOT 1-1}={1/3¢ # 05 ¢ = Ag}
o (A) ={1/Al — Aisl-1,butitsrangeisonly densein X }
O, au (A) = {41 Al — Ais1-1, but rangeis a proper subspace of X |

Theorem (Gearhart,Pruss,& Greiner) : Resolyent
Assume A generates a C,-semigp U (t)on a Hilbert space X. )
U (t) iIsexponentialy stable < Redl >0= 1 € p(A) and

IR(Z, A)|| <M < oo, for al such complex 4




When 1s a Semigroup Exponentially Stable ?

Lumer— Phillips(Renardy& Rogers1993):

D(A) densein complexHilbertspace X,

Re(Ax, X) < —a|X| " ¥x € D(A), o > 0

and

dreal 4. >—a > A—Al isonto

=[U(t) <e™';t>0 (exponentidly stablesemigroup

Resolvent

Theorem (Gearhart, Pruss,& Greiner) :
Assume A generatesa C, -semigpU (t)on a Hilbert space X.
U (t) isexponentially stable << Red > 0= A € p(A) and

|IR(A, A)| <M < oo, for all such complex 4




Direct Adaptive Model Following Control
N The Godfather:} (Wen-Balas 1989)

K.S.Narendra

m

Reference
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Infinite
Dimensional

(Upn» X, €,) Known Signals

Adaptive
Gain Laws




Direct Adaptive Persistent Disturbance Rejection
(Fuentes-Balas 2000)

Reference
model

Disturbance

Generator '

" Plant
o

Lo

(Uns Xinr €y géB ) Known Signals

Disturbane Basis

Adaptive
Gain Laws




Direct Adaptive Control Theory
Is Not Complicated !

Adaptive Regulation

OX
—=Ax+Bu
Infinite - Dimensional Plant < ot y

y=Cx;x, € D(A) c X

X

t—

Controller

G=-yyo.0>0

Use ONLY
Outputs &
Know Almost
NOTHING
about the Plant




For Finite & Infinite
Dimensions

All Roads Lead To Rome

X _ px+Bu- Ax+z
at i=1

X(0) =%, D(A) c X
y=Cx=[(c,x) (¢;,¥) . (¢, X[

with(A, B,C) Almost Strictly Dissipative (ASD)

u=G(t)y
Gt)=-yWo;0>0

= Adaptive Controller {

produces X(t) —0

-

with bounded adaptive gains G(t)



LINEAR ASD:

High Frequency Gain is Sign-Definite (CB>0)

Open-Loop Transfer Function is Minimum Phase

(i.e. Transmission Zeros are all stable)

(== | Almost Strictly Dissipative

. . |u=Gy
Adaptive Regulatlon{ . .
G=-yWo,0>0

j> produces X(t) ————0
with bounded adaptive gains G(t)




Our Infinite-Dimensional Version of the “Two
Simple Open Loop Properties” Theorem

% — Ax+ Bu = Ax+2biui;Ageneratesa C, semigroup
i=1

X(0)=x%x, e D(A)c X
y=Cx=[(c,,X) (C;,X) ... (c,,X)];b,c; e D(A)

\

Theorem: Def : A, e Cisatransmissionzero of (A B,C)when N(H (L)) = {0}

A-1 B
where H(/‘L)E{ c O}: D(A)xRY — XxR" closed linear operator

(A, B,C)isAlmost Strictly Dissipative if and only if
cB=|(c;,h)] >0 and Transmission Zeros(AB,C) = {1 /N(H (1)) {0} }= 0 (A,) "stable’

(i .e.,g generates exponentially stable semigroup)

Mark Balas and Susan Frost, “Robust Adaptive Model Tracking for Distributed Parameter Control of Linear Infinite-dimensional
Systems in Hilbert Space”,|IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 1, NO. 3, JULY 2014.




Adaptive Model Tl’ﬂCkiﬂg Reference Model
in the Presence

of Disturbances

Up = 0L,

A
NV %

Controller

Q) €—G-[c. & G, G|=—he, U yndo)

Can also be
Infinite
Dimensional

\

%




Adaptive Control Law

U= gBuum + GmxrTJ +  Gpgy + G

s . . . . W
M odd T racking Disturbanae Rgection  Stabilization

where

.

G, = —eyumau,a >0
Gain
Adaptation

Laws

G ——exX o 0, >0

y ' m~ m?

p =€ ¢DGD;GD >0

G ——eyeyae,a >0




Reference Model:

Adaptive Quantum Closed System
Desired

Model Tracking to Reduce Hamiltonian
Decoherence

Hy o+H (U)o +H jhay @
—— - —

Sdf - Adjo int Control Disturbanc ~ es
Compact
Re solvent

QND Measurement: Quantum Filtering
With Unitary Operators and Projections

Adaptive Quantum Controller

éG:[Ge Gu Gm GD]:_h(ey’um’ym’¢D)




Schrodinger Equation Control

Time-Varying
¢ Hamiltonian

Self —Adjoint Feedback Control
Energy Hamiltonian Hamiltonian

—A(p+Bu A¢+Zb|u, A=— ;HO

\y=C(p=[(Cl,<0) (C00) o (Cno)]

Adaptive Controller: u=G(t)y& u = >_ g, (t)(c;, X)
j=1

m m m

== Ao+ bu = Ao+ 3 g, (O L

i= |—1 j=1

BG(1)Cx

= ¢(t, %) =U (t)gp,; vVt > 0 (Not Unitary)

— v
Evolution
in X




Quantum Adaptive Control Approach

{XN = B, x———0 exponentially

%] =[P =[P, || constant

Ry X= Z (D, X9,
with =

PrX = i (Des X)

k=N+1

viarobust adaptive control with bounded gains:
H.x=i1 [b(G,(b,X)+G,p,)];be B (X) Marginally
: . Stable
G, =—W7V7.>0
Gp = —Y@p ¥pi7p >0




Adaptive Control:
Convergence to a

Decoherence-Free Subspace 1

Let S be an N-dimensional A-invariant subspace
P, orthogonal projection onto S & P,=I - P, orthogonal projection onto S*

OB, X OX
N2 _p 22— (P.AP.)P. X
ot N ot (NANN) N

P
X _p X_p AP YR.X+(P.B)U
ot o —— ——

y= (SI?E..) PRX

Cr

Br




Adaptive Control:
Convergence to a
Decoherence-Free Subspace 2

Choosing actuators b & sensorsc, = B, =R B=0&C =R,C=0

OP X 0
ot

=P, 2 = (P AP, )P, X+ (P, AP,) P + (P, B)U
o —— "o =

oP, X OX
a? = PRE = (PeAR )R X+ (PeAPR) Pex + (P:B)u
Arn =0 Ar Br

y = (CP, )P X+ (CP)PX




Adaptive Control:
Convergence to a

Decoherence-Free Subspace 3
Theorem: If (A, B;,Cy) ISASD,l.e. C B, > 0& C,(sl — A;)B; minimum phase,
then the Adaptive Controller:

will produce | x| =||PxX| ——=— 0 (Convergence of the state x to the subspace S)

Choose S as a"Decoherence-Free Subspace” (see references [20]-[22])
which are finite dimensional Hamiltonian -Invariant (A-Invariant)
subspaces of the Schrodinger PDE
where all decoherence effects are removed,
|.e. the Schrodinger Evolution Operator is unitary




Direct Adaptive Control of Infinite
Dimensional Linear Systems

m Can be used on a2 Quantum System to cause it to
converge to a Decoherence-Free subspace

m This requires careful Selection of actuators and
Sensors

® So decoherence in Quantum Computing Gates
can potentially be reduced by direct adaptive
control

® Implementation in simple quantum systems 1s
not trivial and certainly remains to be developed.

24




Famous
Lisbon Poet

“No intelligent idea can gain general

acceptance unless some stupidity is mixed
in with it” .. ...

Fernando Pessoa, The Book of Disquiet




