Contingent Planning using Counter-Examples from a Conformant Planner

Sébastien PIEDADE¹, Alban GRASTIEN², Charles LESIRE¹, Guillaume INFANTES³ sebastien.piedade@onera.fr

ONERA¹, DTIS, University of Toulouse, France Australian National University², Canberra, Australia JOLIBRAIN³, Toulouse, France

- Search and rescue missions with local observations
- Uncertain environment
- Partial observability
- $\bullet~\mbox{Plan} \to \mbox{action}$ sequence leading to a goal from an initial state
- Planning under uncertainty
- Find a plan allowing to reach a goal by performing observations of the environment

Formalism	Algorithm Principle	Results	Conclusion	Approach Improvements	
State c	of the art				

- Replanning
 - Compute a first plan without considering uncertainties and replan if an unexpected event occurs during the execution of the plan
 - FF-Replan (Yoon et al., 2007)
- Uncertainty modeled by probabilities on state transitions and actions effects
 - Optimal policy applying the best action to each state
 - Markov Decision Processes (MDPs) (Puterman, 2014)
 - Partially observable MDP (Kaelbling et al., 1998)
 - Belief states and observations to update the belief
 - In the problems we are trying to solve, it is difficult to specify probabilities
- Uncertainty modeled by a set of possible initial states
 - Conformant Planning (Bertoli et al., 2001)
 - Compute a plan (an action sequence) solving the problem whatever the possible initial states without observation
 - Conformant-FF(Brafman and Hoffmann, 2004), CPCES (Grastien et al., 2017)
 - Contingent Planning (Hoffmann and Brafman, 2005)
 - Compute a **Conditional plan** containing branches allowing an **online decision making** conditionned by the result of **observations**
 - Contingent-FF (Hoffmann and Brafman, 2005), CLG (Albore et al., 2011)
 - Compilation approaches (Brafman and Shani, 2012)

Formalism	Algorithm Principle	Results	Conclusion	
Motiva	tions			

- Contingent planning has computation time issue
- The objective is to reduce this complexity
 - Compilation based approaches (Brafman and Shani, 2012)
- Reduces the contingent plan computation complexity by using a conformant planner
- Allows subproblems computations without considering the costly computation of observations

Formalism	Algorithm Principle	Results	Conclusion	
Approa	ch			

Idea

- CPCES Conformant Planner (Grastien et al., 2017), in case of failure:
 - Returns a counter-example
 - Returns a plan solution of some of the possible initial states
- Give the problem to solve to CPCES
- In case of failure, use the **counter-example** and the **failing plan** to determine **which observation** perform and **when**
- Split the problem in **subproblems** taking into account the observation to **reduce uncertainty** in the subproblems
- Use the Conformant Planner to iteratively solve these subproblems

Formalism	Algorithm Principle	Results	Conclusion	
	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII			

Formalism	Algorithm Principle	Results	Conclusion	
Plan				

3 Results

5 Approach Improvements

7/23 S. PIEDADE, A. GRASTIEN, C. LESIRE, G. INFANTES - Contingent Planning using C-Ex. from a Conf. Planne

Formalism

Problem $(\mathcal{L}, \mathcal{O}, I, G)$

- $\mathcal{L} = \{p_1, ..., p_n\}$ is a finite set of **propositions**
- $\mathcal{W}=2^\mathcal{L}$ is the set of possible world states
- \mathcal{O} is a finite set of **operators**, divided in **action** sets A and **observation** sets O
- Each operator op ∈ O is defined by preconditions pre(op) ⊆ L and a set of effects eff(op)
- $I \subseteq W$ is the set of **possible initial states**
- $G \subseteq \mathcal{L}$ is the set of propositions defining the goal

Formalism	Algorithm Principle	Results	Conclusion	
Forma	alism			

Action application in a world state

- $a \in A$ is applicable in the state $s \in W$ iff $pre(a) \subseteq s$
- An effect $e \in eff(a)$ is defined by a triplet (con(e), add(e), del(e))
- If *a* is applicable in *s*, then the application of *a* results in a state *T*(*s*, *a*) with *T* the **transition function** such that:

$$T(s,a) = s - \bigcup_{e \in eff(a) \text{ s.t. } con(e) \subseteq s} del(e) \cup \bigcup_{e \in eff(a) \text{ s.t. } con(e) \subseteq s} add(e)$$

Application of an observation in a world state

- $o \in O$ is applicable in $s \in \mathcal{W}$ iff $pre(o) \subseteq s$
- $eff(o) \in \mathcal{L}$ is defined by the **truth value** of the observed proposition
- The application of o in s has no effect on s, T(s,o) = s

Formalism	Algorithm Principle	Results	Conclusion	Approach Improvements	
Formal	ism				
Belie	f state				
• [Belief $\mathcal{B} = \{s_1, \ldots, $	$\{s_n\} \subseteq \mathcal{W}$ is	the propagatio	n of the possible initia	d l

Action and Observation application in a Belief

- An action a ∈ A is applicable in a belief B if a is applicable in each state of B. The application of a in B consists in applying a to each state of B
- An observation $o \in O$ is applicable in a belief \mathcal{B} if o is applicable in each state of \mathcal{B} . The application of o in \mathcal{B} results in a new belief in which the states that does not contain the observed proposition are removed

Conditionnal Plan

states

- Operators Graph, leading an initial belief to a goal belief
- **Branchings** in the graph corresponds to **observations results**, whether the observed properties are in the current belief or not

Formalism	Algorithm Principle	Results	Conclusion	
Plan				

Forma	

Results

Conclusion

Approach Improvemen

References

CPCES (Grastien et al., 2017)

CPCES checks if the empty plan is solution

Legend			
×	possible initial state	$ \rightarrow$	plan proposed to Z3
$\bigcirc \rightarrow \mathbf{x}$	counter-example found by Z3	\longrightarrow	plan computed by FF
а	returned element		

counter-example found by Z3

returned element

X

а

→ X

ONERA

plan computed by FF

FF is used to compute a plan π from the set of considered states ${\cal B}$

Legend			
×	possible initial state	$ \rightarrow$	plan proposed to Z3
$\bigcirc \longrightarrow \mathbf{X}$	counter-example found by Z3	\longrightarrow	plan computed by FF
а	returned element		

or			

Results

Conclusion

Approach Improvement

References

CPCES (Grastien et al., 2017)

The SAT-solver Z3 checks if π is valid for the complete set of initial states

Legend			
×	possible initial state	→	plan proposed to Z3
$\bigcirc \longrightarrow \mathbf{X}$	counter-example found by Z3	\longrightarrow	plan computed by FF
а	returned element		

		isı	

Results

Conclusion

Approach Improvemen

References

CPCES (Grastien et al., 2017)

If π is valid then it is returned, else a counter-example is found

Legend			
×	possible initial state	$ \rightarrow$	plan proposed to Z3
$\bigcirc \longrightarrow \mathbf{X}$	counter-example found by Z3	\longrightarrow	plan computed by FF
а	returned element		

Legend			
×	possible initial state	$ \rightarrow$	plan proposed to Z3
$\bigcirc \rightarrow \mathbf{x}$	counter-example found by Z3	\longrightarrow	plan computed by FF
а	returned element		

Formalism	Algorithm Principle	Results	Conclusion	
CPCES	(Grastien et al.	, 2017)		

If FF cannot compute a plan, then there is no conformant plan

Legend			
×	possible initial state	<i> →</i>	plan proposed to Z3
$\bigcirc \longrightarrow \mathbf{X}$	counter-example found by Z3	\longrightarrow	plan computed by FF
а	returned element		

The last counter-example and the previous plan are then returned

Legend			
×	possible initial state	→	plan proposed to Z3
$\bigcirc \longrightarrow \mathbf{X}$	counter-example found by Z3	\longrightarrow	plan computed by FF
а	returned element		

CPCES is called to compute a conformant plan

G

ONERA

Ι

If CPCES finds a conformant plan then it is returned

Else a counter-example and a failing plan are extracted

Legend			
×	state	\longrightarrow	success
$ \rightarrow$	application	а	returned element
\longrightarrow	failure		

	lism

Results

Conclusion

Approach Improvemen

References

G

Contingent Process

Identify the observation to perform and in which belief

Formalism	Algorithm Principle	Results	Conclusion	
Contin	gent Process			
11111111111111111111111111111111111111	DIHIHOMMATT.			

 π

 a_3

 a_4

ONERA

 a_2

 a_1

Identification of the action of π that fails in γ

Results

Formalism

If the action is applicable, apply it to \mathcal{I} to keep track of the beliefs

or		

Results

Conclusion

Approach Improvemen

References

G

Contingent Process

The process iterates until an action is not applicable

	lism

Results

Conclusion

Approach Improvement

References

Contingent Process

Extract the propositions in the preconditions of a_3 that fail

Extract the observations able to observe one of the unsatisfied propositions

Apply a first observation to each belief

G

Formalism	Algorithm Principle	Results	Conclusion	
Conting	gent Process			

The current observation is not applicable in any belief

G

Try another observation

G

If the observation is applicable, the observation and belief are extracted

Restart the Contingent process to compute a plan leading to the observation

	ma	

Results

Conclusion

Approach Improvemen

References

G

Contingent Process

Split the belief considering the observation

13/23 S. PIEDADE, A. GRASTIEN, C. LESIRE, G. INFANTES - Contingent Planning using C-Ex. from a Conf. Planne

13/23 S. PIEDADE, A. GRASTIEN, C. LESIRE, G. INFANTES - Contingent Planning using C-Ex. from a Conf. Plannin

ONERA

Results

Conclusion

Approach Improveme

References

Contingent Planning Algorithm

Algorithm 1: Contingent Planning Procedure

Input: $\mathbb{P} = (\mathcal{L}, \mathcal{O}, I, G)$ Output: π_{C}

begin

```
 \begin{array}{l} \pi, \gamma := \operatorname{conformantPlanner}(\mathbb{P}) \\ \text{if } & \gamma = \emptyset \text{ then} \\ \hline \text{return } \pi \\ \mathcal{B}_o, o := \operatorname{findObservation}(I, \mathcal{O}, \pi, \gamma) \\ \pi_o := \operatorname{ContingentPlanning}((\mathcal{L}, \mathcal{O}, I, \mathcal{B}_o)) \\ \mathcal{B}^+ := T(\mathcal{B}_o, o) \text{ with } \nu^+(o) = eff(o) \\ \pi_\rho := \operatorname{ContingentPlanning}((\mathcal{L}, \mathcal{O}, \mathcal{B}^+, \mathcal{G})) \\ \mathcal{B}^- := T(\mathcal{B}_o, o) \text{ with } \nu^-(o) = eff(o) \\ \pi_n := \operatorname{ContingentPlanning}((\mathcal{L}, \mathcal{O}, \mathcal{B}^-, \mathcal{G})) \\ \text{return} (\pi_o; \text{ if } o \text{ then } \pi_\rho \text{ else } \pi_n) \end{array}
```

- The algorithm is described in the paper
- Our approach is sound because we rely on a sound conformant planner to compute each branch of the plan
- The returned solutions are conformant or contingent solutions
- We compare our approach with Contingent-FF (Hoffmann and Brafman, 2005)
- 7 benchmarks of 4 problems each
- Time out of 5 min

Formalism	Algorithm Principle	Results	Conclusion	
Plan				

Formalism

Algorithm Principle

Results

Conclusion

Approach Improvement

References

Results

Problem	Contingent Planning with counter-examples					Contingent-FF			
Problem	time	size	depth	shortest	observations	time	size	depth	observations
blocks/p3	0.94	6	4	3	1	0.00	6	4	1
blocks/p7	5.6	89	16	10	7	0.05	55	9	7
blocks/p11	6.4	169	29	20	7	0.43	117	18	7
blocks/p15	8.05	244	39	27	7	3.20	163	25	7
btcs/p10	0.76	19	19	19	0	0.02	19	10	9
btcs/p30	2.36	59	59	59	0	0.8	59	30	29
btcs/p50	8.13	99	99	99	0	9.79	99	50	49
btcs/p70	24.11	139	139	139	0	57.31	139	70	69
ebtcs/p10	6.21	19	10	2	9	0.01	19	10	9
ebtcs/p30	22.73	59	30	2	29	0.42	59	30	29
ebtcs/p50	56.8	99	50	2	49	4.93	99	50	49
ebtcs/p70	156.11	139	70	2	69	29.10	139	70	69
grid/p2	3.61	9	9	9	0	0.01	9	9	0
grid/p3	4.05	19	19	19	0	9.78	174	43	15
grid/p4	21.24	45	45	45	0	227	464	68	17
grid/p5	18.64	31	31	31	0	TO	-	-	-
erovers/p2	1.09	11	9	5	1	0.00	13	10	1
erovers/p4	3.39	23	17	5	3	0.00	23	14	3
erovers/p6	NO	-	-	-	-	0.09	346	48	7
erovers/p8	3.34	44	21	15	3	0.01	95	36	3
logistics/p1	0.39	9	9	9	0	0.01	10	7	1
logistics/p3	0.49	14	14	14	0	0.01	18	8	2
logistics/p5	0.58	29	29	29	0	0.054	172	26	7
logistics/p7	0.75	31	31	31	0	0.2	247	27	11
elogistics/p1	1.07	10	7	4	1	0.00	10	7	1
elogistics/p3	1.8	18	8	5	2	0.00	18	8	2
elogistics/p5	9.02	138	22	20	7	0.12	172	26	7
elogistics/p7	10.63	185	26	21	11	0.13	247	26	11

- Generally we find shorter plans
- When a conformant solution exists:
 - We find a **conformant plan** while Contingent-FF (Hoffmann and Brafman, 2005) include **observations**
- When there is no conformant solution:
 - Generally the same number of observations but shorter plans
- Drawbacks:
 - Lack of completeness
 - Computation time

Formalism	Algorithm Principle	Results	Conclusion	
Plan				

2 Algorithm Principle

- Contingent Planner computing contingent plans with a limited complexity
- Use a conformant planner to compute conformant subplans if possible
- Use a counter-example and a failing plan to find an observation
- Split the problem in subproblems with less uncertainty
- Iterate until no counter-example exists
- Any conformant planner can be used if it returns a counter-example

Formalism	Algorithm Principle	Results	Conclusion	Approach Improvements	
Plan					

Formalism	Algorithm Principle	Results	Conclusion	Approach Improvements	
Approac	h improvements	5			

Huge Space Version

- We do not compute the beliefs internally, we directly modify the PDDL problem and domain
- We ask CPCES (Grastien et al., 2017) to find a plan leading to one of the possible observations
- To compute the branches we enforce CPCES to start with the plan leading to the observation and we transmit a SMT contraint to indicate the result of each observation contained in the previous branch
- Ongoing results

Backtracking

- Backtracking on the observations
- Handle a list of the plans computed from every possible observations
- Improve the completeness of the approach
- Ongoing results

- Simulation environment of robotic mission
- Internship of Virgile De La Rochefoucauld at the Onera

Albore, A. et al. (2011).

Translation-based approaches to automated planning with incomplete information and sensing. PhD thesis, Universitat Pompeu Fabra.

Bertoli, P., Cimatti, A., and Roveri, M. (2001).

Heuristic search+ symbolic model checking= efficient conformant planning. In IJCAI, pages 467–472. Citeseer.

Brafman, R. and Hoffmann, J. (2004).

Conformant planning via heuristic forward search: A new approach. In International Conference on Automated Planning and Scheduling (ICAPS), Whistler, Canada.

Brafman, R. and Shani, G. (2012).

A multi-path compilation approach to contingent planning.

In Twenty-Sixth AAAI Conference on Artificial Intelligence.

Grastien, A., Scala, E., and Kessler, F. B. (2017).

Intelligent belief state sampling for conformant planning. In Proceedings of the 26th International Joint Conference on Artificial Intelligence, pages 4317–4323. AAAI Press.

Hoffmann, J. and Brafman, R. (2005).

Contingent planning via heuristic forward search with implicit belief states. In Proc. ICAPS, volume 2005.

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. (1998).

Planning and acting in partially observable stochastic domains. Artificial intelligence, 101(1-2):99–134.

Puterman, M. L. (2014).

Markov decision processes: discrete stochastic dynamic programming. John Wiley & Sons.

Yoon, S. W., Fern, A., and Givan, R. (2007). Ff-replan: A baseline for probabilistic planning. In ICAPS, volume 7, pages 352–359.

