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§ Research Interests
§ Energy management of electric vehicles
§ Battery system design/management for electric vehicles
§ Enhancing safety of connected vehicles
§ Energy management of connected vehicle fleets

§ Current/confirmed Projects
§ Ensuring Safety and Reliability of Vehicle Fleets using Vehicle-2-X Communication, (01.2019-)
§ Electrification of long-haul heavy-duty commercial vehicles with automated battery swapping station 

(10.2020-)
§ Urban critical infrastructure, International alliance for digital e-learning, e-mobility and e-research in 

academia, (10.2020-)
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§ Research Interests
§ Digital water and energy metering
§ Water and energy demand modelling and management
§ Behavioral modelling
§ Water-energy nexus

§ Selected current/confirmed Projects
§ 2020 - ongoing: ide3a - international alliance for digital e-learning, e-mobility and e-research in 

academia 
§ 2020 - ongoing: Data Mining Dynamic Human Behaviors for Flood Risk Assessment in Coupled Human-

environment Systems
§ 2019 – ongoing: Smart Water Survey (https://smartwatersurvey.com)
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§ Smart Meter
§ Records energy consumption, voltage/current and power factor
§ Communicate data to consumers & electricity suppliers
§ Provides clarity of the consumption behavior
§ Used for system monitoring and customer billing

§ Privacy
§ Eletricity usage information is communicated to

utility provider
§ Or possibly other

3rd parties
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Smart Meters and Privacy
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§ Non-Intrusive Load Monitoring (NILM) algorithms
§ Estimating the electricity consumption of each appliance
§ Works with a meter measuring aggregated consumption: No need for sensors for each appliance

§ Privacy concerns
§ Appliance usage profile may contain

private information such as behavioral
patterns

§ Routine times nobody is at home
§ Reveal times when occupants are taking

a shower
§ Homeowners is not able to know whether

a NILM algorithm is running remotely
from the utility company or a third party
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G. W. Hart, "Nonintrusive appliance load monitoring," in Proceedings of the 
IEEE, vol. 80, no. 12, pp. 1870-1891, Dec. 1992, doi: 10.1109/5.192069.



§ Residential battery systems can modify
the consumption profile seen by the
smart meter

§ Completely flat profile results hides all
patterns [Yang:TSG15, Kalogridis:11]

§ However, the required battery capacity
is prohibitive and costly [Proebstl:DATE19]

§ Any privacy protection scheme using
batteries should be cost-effective
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Cost of Residential Privacy Protection using Battery Storage
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§ Mutual information [Proebstl:DATE19]

§ RMS from the average power consumption

§ Definitions from previous works are hard to connect with the general perceptions

§ NILM algorithms provide the accuracy of appliance power consumption over every time step

§ Finite-State (FS) F-score [Makonin:EE15]

§ 𝐹𝑆! =
"×$%!×&%!
$%!'&%!

§ Where 𝑅𝐶! and 𝑃𝐶! are recall and precision for an appliance, 𝑖, which take into account both accuracy and 
false positives

§ Mean Absolute Percentage Error (MAPE)
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§ SparseNILM [Makonin:TSG16]

§ SparseNILM code availability: https://github.com/smakonin/SparseNILM (Copyright (c) 2015 by Stephen 

Makonin)

§ We aim at reducing the accuracy of the SparseNILM algorithm

Page 9

Target NILM Algorithm: SparseNILM

When Privacy Meets Non-Intrusive Load Monitoring: Trade-off Analysis and Privacy Schemes via Residential Energy Storage, IARIA ENERGY 2020

Figure source: Makonin, Stephen, et al. "Exploiting HMM sparsity to perform online real-time 
nonintrusive load monitoring." IEEE Transactions on smart grid 7.6 (2015): 2575-2585.
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Figure source: Makonin, Stephen, et al. "Exploiting HMM sparsity to perform online real-time 
nonintrusive load monitoring." IEEE Transactions on smart grid 7.6 (2015): 2575-2585.

The Super-States combines 
the individual appliances 
load states.

The Viterbi Algorithm exploits matrix 
sparsity to efficiently estimate the most 
likely sequence of hidden appliance states.

https://github.com/smakonin/SparseNILM


§ M1: Add Gaussian noise to the whole duration of the 
profile
§ The simplest method to obfuscate the original profile
§ Does not require as much battery capacity as water-filling

§ M2: Add Gaussian noise only when a particular appliance 
of interest is used
§ Check whether particular appliance can be hidden
§ Requires even less battery capacity than M1

§ M3: Water-filling for a particular appliance of interest
§ Remove the shape of the profile and conserve only the 

average consumption 
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M1: (Up) Original profile of the whole house

(Middle) Gaussian noise with std of 0.3 kW,

(Low) Battery energy level to support M1 

M3: (Up) Original profile of clothes dryer 

(Middle) Water-filling for the dryer

(Low) Battery energy level to support M3 



§ M4: Spread-out the electricity consumption of particular application
§ M3 still preserves the average electricity consumption information while being used
§ Reduce the information by controlling the height of the rectangular profile in M3

§ M5: Erase an appliance’s consumption
§ M4 still preserves the information about the time an appliance is being used
§ Remove this information by completely flattening out the profile

§ M6: Day-wise water-filling for the whole electricity consumption profile
§ Conserves only the total average consumption
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§ The AMPds dataset helps researchers developing load disaggregation/NILM algorithms

§ Electricity, water and natural gas measurements at one minute intervals

§ Meters 24 loads at the electrical circuit breaker panel

§ Total of 1,051,200 readings per meter for 2 years of monitoring
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Dataset: AMPds Dataset [Makonin:EPEC13]
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Measurement uncertainty between main & sub-meters
The DENT power meter used is considered revenue class (Class 0.5) which has a very high accuracy,
typically better than 1% (o0.5% typical). This meter accuracy classes are governed by two standards
organizations: ANSI C12.20 for North America and IEC 62053 elsewhere (see Table 2).

For this class of meter the absolute error is limited to the 0.5% of the full scale reading. Usually,
however, the error is somewhat proportional to the reading, with higher readings subject to larger
absolute error than lower-valued readings. To make a simple model, we could consider each meter to add
a Gaussian error to the true value, with variance proportional to the true value. Each individual meter
adds such Gaussian noise. So the variance of the sum of such readings is the sum of individual variances
(i.e., proportional to the sum of true values). According to the same model, the main meter makes a
Gaussian error with variance proportional to the whole-house power usage, which is the sum of true
power values in each individual meter. Hence, the error in the main meter has the same variance as the
sum of the readings of individual meters. This is due to the fact that all meters are Class 0.5, so we expect
they would have the same constant of proportionality for the variance. If the main meter had a higher
class (better rating than 0.5%), then it would produce less uncertainty than the sum of individual meters.

Dataset cleaning
For the electricity data, an additional step was performed. We checked that the whole-house reading was
never less than the summation of all sub-meters. If it was then the whole-house reading was changed to
be equal to the summation. This can happen because not all meters can be read simultaneously. Each
DENT PowerScout 18 meter has 6 three-phase sub-meters (labelled A through F) which can be
configured to be 18 single-phase sub-meters. The storage registers within each of the 6 three-phase sub-
meters is updated once per second with new measurements. Previously, we discussed the issue of
timestamp synchronization and that timestamps between sub-meters could be off by ±10 s due to the fact
that the meters have a limiting fixed baud rate of 9600 bsp. This slight variation in reading time is the
cause of having whole-house readings less than the summation of all sub-meters. Suppose, for example,
the electricity mains are metered by sub-meter A and the heat pump is metered by sub-meter F. The data
acquisition unit would download the measurement data from sub-meter A, then B, and so on, finally to
F—taking a total of 10 s to do. If the heat pump was to turn ON within that 10 s window, then the
readings from sub-meter A would not reflect the more recent event that would be reflected in sub-meter
F—the heat pump turning ON.

The second factor that can contribute to this summation has to do with rounding. Although the meter
is quite precise, the measurement values stored in the memory registers are rounded to the nearest whole
number for some measurements and tenths of a whole number for other measurements. When we sum
up these rounded numbers, they can exceed the whole-house reading. No changes to the whole-house
reading were performed if the opposite was true. This is because there were many unmetered loads in the
house that could be running at any given time.
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Figure 6. Metering Bus Diagrams. Bus diagrams of how each of the (a) electricity, (b) natural gas, and
(c) water meters are connected in relation to each other. For natural gas and water, we show what other
appliances/loads exist that consume each resource. This is not done for electricity because there are too many
unmetered loads.

www.nature.com/sdata/

SCIENTIFIC DATA | 3:160037 | DOI: 10.1038/sdata.2016.37 10

S. Makonin, et al., “Electricity, water, and natural gas consumption of a residential house in Canada from 2014 to 2014,” Scientific Data, vol. 3, no. 160037, pp.1-12, 2016.



§ Step 1: Pre-processing input profiles
§ Number of appliances have a huge impact on disaggregation performance
§ We select a subset of appliances to generate the whole consumption profile to analyze the performance

§ Step 2: Train models using SparseNILM algorithm

§ Step 3: Apply profile modification methods

§ Step 4: Sparse Viterbi algorithm to generate evaluation scores
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§ Profile modification results

§ M6: Day-wise water-filling requires 15.04 kWh 
battery capacity
§ The capacity is comparable to commercial 

products offered by Tesla or Enphase
§ But, still impractical becaues 100% of capacity is 

used for flattening the profile
§ Several thousands of dollars

§ Battery State-Of-Charge (SOC) change over 2 
years
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§ Mean FS F-Score and Mean MAPE for all 
appliances

§ M1 & M2
§ Larger the noise, more battery capacity required
§ Accuracy degrades proportionally to the size of the 

noise

§ M3 – M5
§ Battery required differs distinctly, but do not 

necessarily result in degraded FS F-Score
§ Falling accuracy is more related to # of appliances

§ M6
§ Required battery size is the largest
§ Worse FS F-Score and MAPE occurs in this method
§ Not so cost-effective compared to M1&M2
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§ Mean FS F-Score and Mean MAPE for clothes
dryer (CDE)

§ M1: Similar effects to all appliance results
§ Accurcay degrades proportionally to the size of the 

noise

§ M2: Adding noise only when used does not harm 
accuracy

§ M3 – M5: Battery required differs distinctly 
depending on the magnitude of modification , but 
do not necessarily result in degraded FS F-Score

§ M6: Required battery size is the largest
§ Surprisingly, no impact on the estimation accuracy
§ Possibly due to the dominance of CDE profile over 

other signals

Page 17
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§ We investigated the effectiveness of a number of heuristic algorithms using residential battery 
storage in preserving privacy against a NILM algorithm

§ Most prior works are based-on water-filling technique, which is effective in hiding the usage 
patterns, but very costly

§ We assume that NILM algorithms will be used to extract privacy information and specifically aim at 
lowering its accuracy

§ Our preliminar results indicate that some intuitive methods do not necessarily yield significant 
drop in NILM algorithm accuracy

§ Future Work
§ A systematic investigation for providing privacy protection against NILM algorithm is warranted
§ Holistic cost analysis including the electricity bills should be performed
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