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Motivation Introduction and Motivation

• Scientific applications and large-scale experiments generate a deluge of data
• Gap between the computational power and other hardware is widening [2]

• More data can be computed than can be stored e�iciently
• Additional investments for storage hardware are necessary
• New hardware requires additional power and incurs additional costs for energy

• Data-intensive fields have increasing costs for storage and energy
• German Climate Computing Center: each petabyte of disk storage costs roughly
100,000e plus 3,680e annually for electricity

• Almost 200,000e per year in total for its 54 PiB storage system
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Motivation.. . Introduction and Motivation

• Data reduction is a solution to minimize energy consumption
• Reducing the amount of storage hardware required to store the data
• Can consume significant amounts of energy, negating its benefits

• Energy e�iciency in supercomputers has been investigated extensively
• Impact of data reduction on energy e�iciency remains largely unexplored

• Data reduction is of great interest in scientific so�ware
• Algorithms have to be appropriate for their data andmust be tuned
• Decreasing runtime performance has to be avoided
• Choosing a compression algorithm is a technical decision

• Decision depends on the data and the so�ware/hardware environments
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Motivation.. . Introduction and Motivation

• Ultimate goal: automatize the decision making process for users
• Poor manual choices can lead to low compression ratios (CR), decreased performance
and increased energy consumption

• Focus on scientific applications in the context of HPC with huge amounts of data

• We have already analyzed the energy impact of data reduction in [1]
• Extended for intelligently selecting algorithms and settings
• Emphasis on the algorithms’ energy consumption
• Users are able to specify additional criteria to tune behavior
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Energy-E�icient Data Compression Energy-E�icient Data Compression

• Extended Scientific Compression Library [6]
• SCIL is a meta-compressor
• Should pick a suitable chain of algorithms
satisfying the user’s requirements

• Extended by a decision component that
can use di�erent criteria for selection

• Support energy-e�icient data reduction by
using machine learning approaches

• Main goal: provide the most appropriate
data reduction strategy for a given data set
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Decision Component Energy-E�icient Data Compression

• Decision component takes into account information about the data’s structure
• Machine learning techniques infer best suited algorithms and settings
• A training step is currently done separately from application runs

• Output data set is split up into individual variables and then analyzed
• Collect compression ratios, processor utilization, energy consumption etc.
• Use wide range of data sets to have a su�iciently large pool of training data

• Decision component currently makes use of decision trees
• Planned to be extended with other techniques
• Data is split into a training set and a test set to prevent overfitting
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Decision Component.. . Energy-E�icient Data Compression

• Trees are created using the DecisionTreeClassifier from scikit-learn
• Tree representation is then parsed into a file that is usable in SCIL

• Decision component’s behavior can be separated into two distinct modes
1. Data structure is known

• Can select the optimal compression algorithm and settings
• Mainly useful for production runs of known applications
• E. g., train for specific application and choose the best compressor for each subsequent run

2. Data structure is unknown
• Use machine learning techniques to infer algorithm and settings
• Information about storage size, number of elements, data dimensions, data type etc.
• Possible to tune decision for energy e�iciency, compression ratio or performance

Michael Kuhn Improving Energy E�iciency of Scientific Data Compression with Decision Trees 8 / 19



Training Energy-E�icient Data Compression

• Fine-grained power measurement is necessary
• Used the ArduPower wattmeter [4], v2 presented at ENERGY 2020

• Designed to measure di�erent components inside computing systems
• Provides 16 channels with a variable sampling rate of 480–5,880Hz

• Main metrics: compression ratio, runtime and consumed energy of each algorithm
• Used three data sets from di�erent scientific domains

1. ECOHAM: 17 GB, ecosystemmodel for the North Sea [5] (climate science)
2. PETRA III: 14 GB, tomography experiments from P06 beamline [3] (photon science)
3. ECHAM: 4 GB, atmospheric model [7] (climate science)
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Training.. . Energy-E�icient Data Compression

• Comparable compression ratios with
di�erent energy consumptions

• Compare mafisc and zstd for ECOHAM

• Necessary to select the compression
algorithm intelligently

• Avoid wasting performance/energy

• Detailed analysis available in [1]
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Evaluation Evaluation and Results

• Run ECOHAM using our SCIL HDF5 plugin to evaluate our approach1

• Trained the decision component using two di�erent sets of training data
1. ECOHAM data

• Represents case with known application that has been run before
• Still only 75% of ECOHAM’s output data is used for training
• Uncertainty corresponds to updated application or changed output structure

2. ECHAM data
• Represents case with new application
• Decision component has to use information gathered from other applications
• Try to map decisions that make sense for other data sets to the current data

1Code and data are available at https://github.com/wr-hamburg/energy2020-compression
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Evaluation.. . Evaluation and Results

• Two di�erent optimization targets, which correspond to di�erent use cases
1. Optimized for minimal energy consumption per compression ratio

• Allows shrinking the data with the least amount of energy

2. Optimized for maximal compression ratio per time
• Performance is not degraded excessively

• Decision tree using ECOHAM training data
• Maximal compression ratio per time
• Multitude of metrics are taken into account
• Array dimensions, data size, number of
elements, size of each dimension and
information about data types
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Evaluation.. . Evaluation and Results

• Run ECOHAMwith important
compressors

• Static mode and decision trees
• Decision trees have access to all
compressors

• Four decision trees have been used
1. ecoham-1: ECOHAM data, minimal
energy consumption per CR

2. ecoham-2: ECOHAM data, maximal
compression ratio per time

3. echam-1: ECHAM data, minimal
energy consumption per CR

4. echam-2: ECHAM data, maximal
compression ratio per time
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Evaluation.. . Evaluation and Results

• Decision component correctly uses
energy-e�icient algorithms

• ecoham-1: ECOHAM’s data structure is
known, data is reduced e�ectively

• echam-1: data structure unknown,
still chooses appropriate compressors

• Optimization for maximal compression
ratio increases energy consumption

• echam-2: data structure unknown,
choices are not as e�ective as in
previous case
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Conclusion Conclusion and Future Work

• Amount of data saved by compression heavily depends data structure
• Preconditioners, algorithms and settings might work well for one data set, but might
increase energy consumption for others

• Fine-grained per-variable analyses identified strategies for three data sets
• Trained the decision component for our real-world evaluation

• Demonstrated that decision component chooses appropriate compressors for both
known and unknown applications

• Can be further tuned for energy e�iciency or compression ratio
• Achieved satisfactory compression ratios without increases in energy consumption
• Slight increases in energy consumption allow significantly boosting compression ratios
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Future Work Conclusion and Future Work

• Training currently has to be performed in a separate step
• Training data collection can bemore tightly integrated with production runs
• Training mode to capture and analyze applications’ output data during regular runs
• Send samples to a training service that analyzes them in more detail

• HDF5’s current filter interface is too limiting to fully exploit all possibilities
• Operates on opaque bu�ers, impossible to access single data points
• Use data variance to further tune compressor’s behavior
• Chains of compressors can lead to additional space savings
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Questions Conclusion and Future Work

Thank you for listening! If you have any questions, please sendme an e-mail to
michael.kuhn@ovgu.de
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