
Andreas Schmidt / DBKDA-2020 1/17

The Twelfth International Conference on Advances in 

DBKDA 2020

September 27, 2020 to October 01, 2020 - Lisbon, Portugal

Principle Structure and Architecture of a Code 

Generator

Andreas Schmidt

(2)

andreas.schmidt@kit.edu

Institute for Automation and 

Applied Informatics

Karlsruhe Institute of Technologie

Germany

(1)

andreas.schmidt@hs-karlsruhe.de

Faculty of Computer Science and Business 

Information Systems

University of Applied Sciences Karlsruhe

Germany



Andreas Schmidt / DBKDA-2020 2/17

A Short Resume of the Presenter

Prof. Dr. Andreas Schmidt is a professor at the Department of Computer

Science and Business Information Systems of the Karlsruhe University of

Applied Sciences (Germany). He is lecturing in the fields of database infor-

mation systems, data analytics and model-driven software development.

Additionally, he is a senior research fellow in computer science at the Institute

for Applied Computer Science of the Karlsruhe Institute of Technology (KIT).

His research focuses on database technology, knowledge extraction from

unstructured data/text, Big Data, and generative programming. Andreas Schmidt was awar-

ded his diploma in computer science by the University of Karlsruhe in 1995 and his PhD in

mechanical engineering in 2000. Dr. Schmidt has numerous publications in the field of data-

base technology and information extraction. He regularly gives tutorials on international con-

ferences in the field of Big Data related topics and model driven software development. Prof.

Schmidt followed sabbatical invitations from renowned institutions like the Systems-Group at

ETH-Zurich in Switzerland, the Database Group at the Max-Planck-Institute for Informatics

in Saarbrukken/Germany and the Data-Management-Lab at the University of Darmstadt.



Andreas Schmidt / DBKDA-2020 3/17

Research Interests

• For PIA Group at KIT see https://www.iai.kit.edu/english/941.php

• Additionally, all sort of database related stuff, like

• Database Implementation

• Graph databases

• Semantic Text Analysis

• Information Retrieval

• ...



Andreas Schmidt / DBKDA-2020 4/17

Outline

• Introduction

• Model Driven Software Development

• Architrecture of a General Purpose Software Generator

• Summary



Andreas Schmidt / DBKDA-2020 5/17

What is a Software Generator?

Principle

GeneratorInput Output

Templates/

Transformation Rules

Compiler

executable

Interpreter



Andreas Schmidt / DBKDA-2020 6/17

Model Driven Software Development 

• Partial or whole generation of programs, based on a formal model 

• Model represents the problem space of the application

• Models could be transformed in other models or into source code

• Model representation:

• Abstract and formal description (without implementation details) of a
problem space 

• Notation:
- text
- xml
- graphical representation



Andreas Schmidt / DBKDA-2020 7/17

reference
implementation

schematic 
code

generic
code

individual
code

schematic 
code

individual
code

plat-
form

transformation
model

analyse split

Source: Stahl, Voelter, 2005

Concept of MDSD



Andreas Schmidt / DBKDA-2020 8/17

What can be generated ?

• Database Schema

• Data Access Layer

• User Interfaces

• Whole or part of the application logic

• Documentation

• Configurations

• Tests

• Wrapper

• Import/Export modules

• ...



Andreas Schmidt / DBKDA-2020 9/17

Advantages of Software Generation

• Higher productivity

• Tedious parts can be automated

• Reduced reaction time on design changes/change requirements

• Improved quality

• The transformation (template) is responsible for the quality of the code

• Integrated architecture in templates defined

• Automatic transformations (no careless errors)



Andreas Schmidt / DBKDA-2020 10/17

Advantages of Software Generation

• Higher abstraction

• Model represents an abstract description of the application

• Business rules can be review by domain experts

• easier change to new technology (change templates)

• reuse of already developed transformation rules (software factories)

• better handling of complexity (reduction to essential)

• consistency of application

• code generated based on rules is very consistent (naming conventions,

parameter passing, ...) and so easy to understand and use

• cross cutting concerns bundled in a central place (template/rule)



Andreas Schmidt / DBKDA-2020 11/17

General Purpose Generator

• Workflow

Partial Class

Template

Generator Executable

Model

Compiler/
Interpreter

Output
Base-
Class

Hand 
Written
Code



Andreas Schmidt / DBKDA-2020 12/17

Generator Backend



Andreas Schmidt / DBKDA-2020 13/17

Generator Kernel



Andreas Schmidt / DBKDA-2020 14/17

Generator Frontend



Andreas Schmidt / DBKDA-2020 15/17

Next Steps

• Take a look at the Tutorium at DBKDA-2020 entitled 

„Codegeneration for Database Developers“

• Take a look at the Resources section of this slideset



Andreas Schmidt / DBKDA-2020 16/17

Resources

• Jeffrey E. F. Friedl, Mastering Regular Expressions, Third Edition, 

O’Reilly, August 2006

• Jack Herrington: Code Generation in Action. Manning Verlag, 

2003, 350 Seiten, ISBN: 1930110979

• http://www.codegeneration.net/



Andreas Schmidt / DBKDA-2020 17/17

Resources

• Krzysztof Czarnecki, Ulrich Eisenecker: Generative Programming: 

Methods, Tools, and Applications, Addison-Wesley Professional; 1. Auf-

lage, 2000

• http://www.omg.org/mda/

• Markus Völter, Thomas Stahl: Model-Driven Software Development - 

Technology, Engineering, Management. Wiley & Sons, May 2006

• Homepage Markus Völter:

http://www.voelter.de/services/mdsd.html


