

Tackling Semantic Shift in Industrial Streaming Data Over Time

Lisa Ehrlinger, Christian Lettner, Johannes Himmelbauer

DI Lisa Ehrlinger Senior Researcher Data Analysis Systems / Software Competence Center Hagenberg Senior Researcher / Johannes Kepler University Linz +43 50 343 836 lisa.ehrlinger@scch.at www.scch.at

SCCH is an initiative of

Data Quality Research at JKU and SCCH

- Johannes Kepler University (JKU) Linz
 - Senior researcher in research group of a.Univ.-Prof. Wolfram Wöß
 - DQ tool survey: <u>https://arxiv.org/abs/1907.08138</u> (Ehrlinger et al. 2019)
 - DQ tool DQ-MeeRKat: <u>https://github.com/lisehr/dq-meerkat</u>
 - Talks at MIT Chief Data Officer and Information Quality Symposium 2019 and 2020
- Software Competence Center Hagenberg GmbH (SCCH)
 - Lead of research focus "Data Management and Data Quality"
 - Research on DQ issues with industrial companies (e.g., KTM)
 - DQ tool: A DaQL to Monitor Data Quality in Machine Learning Applications International Conference on Database and Expert Systems Applications. Springer, Cham (Ehrlinger et al. 2019)

The Software Competence Center Hagenberg (SCCH) is

softwarepark 🕨 part of the software park Hagenberg hagenberg Non-profit organization for data science and software science SCC Founded 1999 ~ 80 employees > 7 Mio. € turnover **COMET** Center At JKU / Open Union of SCCH partner Innovation Center companies

software competence

hagenberg

Semantic Shift – A Data Quality Problem

Linguistics: "semantic shift"

- Also: "semantic change", "semantic drift"
- Evolution of word meaning over time (Bloomfield 1933)
- Machine learning (ML) research: "concept drift"
 - Drift in the target variable predicted by a ML model (Widmer & Kubat 1996)
- Data quality (DQ) research
 - A lot of research into DQ dimensions (cf. Wang & Strong 1996)
 - Related DQ terms:
 - "identity" and "rigity", referring to the stability of a variable (Guarino and Welty 2002)
 - "timeliness", which describes how current data is for a task at hand (Heinrich et al. 2018)

Industrial Application Scenario (1)

Austrian manufacturing company

- Mass production of plastic and multi-material parts with injection molding machines
- Injection molding = complex physical-chemical process

ML Project with SCCH: monitor the stability of the production process

- Avoid machine damage & perform countermeasures as early as possible
- Data-driven solution to ensure production quality using …
 - Stream data processing, classical ML algorithms, outlier detection, causal discovery, etc.
- Requirement for ML: algorithms expect data to be in a standardized format

Industrial Application Scenario (2)

- Injection molding machines almost exclusively from same vendor
 - Shipped with standardized API \rightarrow high level of data consistency
 - Process data logged into the "MES system"

Issues with semantic shift

- There exist different machine types and versions
- Identical machines (same type + version) might still have different firmware
- Variables in process log schema undergo semantic shift (over time)
 - Example: with a firmware update, measurements of pressure sensor are changed from storage in bar to millibar (updated for higher granularity)
- Ignoring semantic shift yields to wrong ML results!

L* System Architecture

L* Online Datastore

- Apache Cassandra
 - Column-based
 - Optimized for large amounts of data


```
create table MDavro (
        jahr int,
         seriennummer int,
        interval int,
         zeitpunkt timestamp,
        value blob,
        primary key((jahr, seriennummer,
            interval), zeitpunkt));
create table MD (
        jahr int,
        seriennummer int,
        metric text,
         zeitpunkt timestamp,
        value text,
        primary key((jahr, seriennummer,
           metric), zeitpunkt));
```


L* Data Processing to handle Semantic Shift

- 3 Spark jobs
 - Data preprocessed according to defined rules to handle semantic shift (cf. next slide)
- Stream engine
 - Encoded with Apache Avro data serialization
 - LoadMD-Avro receives machine data → decode → store to Cassandra
 - PreProMDStream receives machine data → decode → preprocessing with rules → returns data to Confluent
- Batch environment
 - PreProMDBatch reads data from Cassandra (requires start and end point as batch interval) → preprocessing with rules → returns data to Cassandra

Excerpt of Semantic Shift Processing Rules

MD_paramname	Process_paramname	Machine_type	Scale	Offset	Lag	Datatype
Process_value_1	Mode stopped	T1, T2, T3	1	0	0	Bool
Process_value_2	Mote Starting	T1, T2, T3	1	0	0	Bool
Process_value_3	Mode Production	T1, T2	1	0	0	Bool
Process_value_4	Product Counter	T1, T2, T3	1	0	0	Long
Process_value_5	Process Temperature 1	T1, T2	1	0	0	Float
Process_value_6	Process Pressure	T1, T2	1	0	0	Float
Process_value_3	Mode Production Phase 1	Т3	1	0	0	Bool
Process_value_7	Mode Production Phase 2	Т3	1	0	0	Bool
Process_value_5	Process Temperature 1	Т3	1.8	32	0	Float
Process_value_6	Process Temperature 2	Т3	1.8	32	0	Float
Process_value_7	Process Temperature 1 Previous	Т3	1.8	32	1	Float
Process_value_8	Process Pressure	Т3	1	0	0	Float

L* Performance

Deployment in productive environment \rightarrow handle Big Data

- Performance evaluation: 28.8 million records
 - Avg.: 42.2 measurement values / record

Spark Data Stream	Unit	Throughput (unit/sec)	Storage (byte/unit)	Storage (disk space in GB)
LoadMDAvro	Records	358	182	5.01 GB
PreProMDBatch	Values	174,343	4.6	6.49 GB
PreProMDStream	Values	4,816	-	-

Outlook

- Data preprocessing system L* to handle semantic shift in data streams
- Rule-based solution most common in DQ tools (cf. Ehrlinger et al. 2019)

Ongoing and future work

- Extend rule-based system with semantic solution to achieve a higher degree of automation
- Investigate DQ assessment for streaming data from a more general viewpoint → develop DQ metrics specific for data streams

Contact

DI Lisa Ehrlinger Senior Researcher Data Analysis Systems +43 50 343 836 lisa.ehrlinger@scch.at www.scch.at

© Software Competence Center Hagenberg GmbH

References

- 1. L. Bloomfield, *Language*. Allen & Unwin, 1933.
- 2. A. Tsymbal, "The Problem of Concept Drift: Definitions and Related Work," *Computer Science Department, Trinity College Dublin*, vol. 106, no. 2, 2004, p. 58.
- 3. G. Widmer and M. Kubat, "Learning in the Presence of Concept Drift and Hidden Contexts," *Machine Learning*, vol. 23, no. 1, 1996, pp. 69–101.
- 4. M. Klenner and U. Hahn, "Concept Versioning: A Methodology for Tracking Evolutionary Concept Drift in Dynamic Concept Systems," in ECAI, vol. 94. PITMAN, 1994, pp. 473–477.
- 5. L. Ehrlinger, E. Rusz, and W. W[°]oß, "A Survey of Data Quality Measurement and Monitoring Tools," 2019, https://arxiv.org/abs/1907.08138

