
Reconsidering Optimistic

Algorithms for Relational

DBMS
Malcolm Crowe, University of the West of Scotland (presenter)

Fritz Laux, Reutlingen University, Germany

1

Malcolm Crowe

Emeritus Prof, University of the West of Scotland

Joined UWS in 1972 (as Paisley College)

Various academic posts in UWS, retired 2018

Open-source software projects

https://github.com/MalcolmCrowe

Since 2004 developed PyrrhoDBMS

https://pyrrhodb.blogspot.com

I’m Malcolm Crowe, a retired professor from the
University of the West of Scotland. Over the years I have
led numerous funded research projects and contributed
a lot of open-source software.
My most recent work is on Github, and it includes the
two DBMS I want to talk about today.
Since 2002 I have written in C# for Windows and
Linux/Mono, and since 2004 I have been developing
Pyrrho, my own relational DBMS.
Since 2018 I have been exploring the use of immutable,
shareable data structures to help with implementing
optimistic concurrency control.

2

Background
At DBKDA 2019 I demonstrated StrongDBMS with TPCC

StrongDBMS uses optimistic concurrency control OCC

And OCC is not supposed to work well in high concurrency!

We changed the TPCC benchmark for high concurrency

And the usual TPCC design then had more sources of conflict

StrongDBMS demo outperformed commercial DBMS

The demo showed concurrent operation of 100 clerks/warehouse

 This contribution explains the results:

The demo showed OCC can be robust and effective

So at last year’s DBKDA, I presented a demo of StrongDBMS, a little DBMS that
followed this design. The demonstration modified the famous TPCC
benchmark slightly to create high transaction concurrency, initially as a proof
that the DBMS had ACID properties.

To my great surprise, StrongDBMS handled concurrency much better than
commercial DBMS products. We are not allowed to talk about the
performance of the major commercial DBMS, so I provided a test based on
TPCC in versions for StrongDBMS and several popular DBMS, for people to try
at home on their favourite DBMS.

The test allowed people to choose the number of clerks per warehouse, and at
the Athens conference I showed a live 10-minute demo of StrongDBMS
handling 100 concurrent clients in this test. We found no other DBMS capable
of this level of concurrency.

The demonstration was convincing, but there was little attempt to explain the
difference in performance. We offer such an explanation today, as we believe
there are lessons here that implementations based on optimistic concurrency
algorithms can be robust and effective, and it is time to reconsider the myths
about their performance.

3

DBMS mostly use locking

 The standard mechanism for concurrency

Appears to provide assurance of commit success

But only if CAP theorem and 2-army problems are ignored

Locking leads to complex implementation

And does not work well for interactive use, or Web

Most Web applications use OCC

But middleware brings a third step in commit

Locking appears to offer the assurance that transactions can be
committed atomically and serialisably. However, it is not an absolute
guarantee, since networking or hardware problems can defeat even
the most secure systems, resulting in what is called heuristic
completion as a last resort. It is also extremely complex in practice.
On the Internet, data is often spread over multiple databases and
users often want to make complex changes to multiple data, such as
when booking holidays. Long transactions result in unacceptable
delays and so many compromises must be made.

For these reasons, most Web applications must use a form of
optimistic transaction control, as the Web servers can mediate the
interaction with the DBMS. But this only serves to complicate the
picture, as now there are more participants in what has become a
distributed transaction.

4

The case study in detail

 TPCC benchmark has 1 clerk per warehouse

A clerk can process up to 16 new orders in 10 mins

Transactions are quite long

A conflict rate of 4% is designed in to the test

 For our case study we add more clerks (100)

Conflicts on running totals of orders and payments

Read/Write conflict at row level

Conflicts on allocating new order numbers

Write/write conflict

With 100 clerks and 1 warehouse, nearly all transactions must fail

The demonstration used a modified version of the famous TPCC benchmark. This simulates an online
transaction processing system and has been in use for decades in comparing the performance of
different DBMS.

There are warehouses with many items and customers arranged in districts, and one clerk per
warehouse accepting orders over the telephone. There is only one database server.

The specification is very detailed, with a standard initial state and models a range of routine tasks that
the clerks must carry out. In the design, interaction between warehouses results in about 4% conflicts,
mostly on stock levels.

The performance measure for DBMS is the number of new-order transactions per second, and for
commercial databases this can run to millions. Despite this, the specification requires each clerical task
to take quite a long time: up to 20 seconds for a new order, so that in a 10-minute test run a single
clerk can complete 16 new orders.

To create a more challenging environment, our demonstration kept everything from the TPCC
specification, but allowed the number of clerks to increase for a single warehouse.

The TPCC design then has many additional sources of conflict, especially on total sales and payments
to date, and on allocating order numbers. There still are issues with stock levels. Transactional
behaviour is important for two of the standard tasks: new order and payment. Inevitably therefore, as
the number of clerks increases, the number of new orders per clerk will diminish, and the total
number of new orders in 10 minutes (the throughput) will be less than 16 times the number of clerks.

If there are 100 clerks, most new-order transactions will fail.

5

StrongDBMS worked well

Very simple algorithms, and only two locks

 Fully serialisable transactions despite conflicts

Correctness implies most transactions fail in this test

 But higher throughput resulted with OCC implementation

 Serialisation of transactions evident in the log

Despite large number of overlapping transactions

 StrongDBMS uses immutable shareable data structures

PyrrhoDB v7 extends this approach to a full DBMS

Under development: a demo alpha version is available

StrongDBMS has only two kinds of lock: one on the list of
open databases, and one per database file. The database
file is the transaction log, a serialised record of
transactions committed. The transaction log will show
the correctness of the successful transactions.

In addition, the demo maintained a full list of the
requests made to the DBMS, so that its behaviour could
be verified.

The special feature of StrongDBMS enabling reliable
operation is the use of immutable shareable data
structures, and this has led me to use the same idea in
the next version of Pyrrho (v7, currently alpha).

6

Results for StrongDBMS
 The warehouse initially has 30000 orders,

 Including 9000 “new” orders.

 In 10 minutes a single clerk has done 16 more

 Too many clerks result in reduced performance

This table of results was included in the DBKDA 2019

conference paper. The initial state of the database is as

specified by TPCC: 3000 orders for each of the 10

districts (30000 in all), some of which are called “new”.

With 1 clerk, we see 16 new orders being completed in

the 10 minutes.

With 10 clerks, we get 138, and with 30 only 241. We

see that the number of successful commits also falls. 39

for a single clerk, but only 565 for 30 clerks, when the

number of exceptions reported is greater than the

number of successful commits.

7

Other DBMS did less well
 2 top commercial DBMS and PostgreSQL

All tests show completed orders in 10 minutes

 The * indicates a collapse in performance

Name 1 clerk 2 5 10 20 30 40 50 60

StrongDBMS

laptop
16 138 199 241 *

StrongDBMS

16GB RAM
16 129 220 254 409 331 328

Commercial1 16 111 127 132 16 *

Commercial2 16 107 114 119 124 117 *

PostgreSQL 16 33 69 6 *

This slide shows results reported at the Athens
conference (where PostgreSQL was called Comercial3).
The top row shows the results mentioned in the last
slide. We can see an improvement from using a large
machine. But the commercial DBMS (on the same
machine) were outperformed. The asterisks indicate a
collapse in performance, markedly less throughput
and/or non-reproducible behaviour such as is found
when the device is overloaded.

PostgreSQL performed particularly badly, and after
receiving some feedback on this we agreed to discover
the reasons why. Hence this paper.

8

Comparison chart

 Blue: Theoretical max 16 orders/clerk. Orange: StrongDBMS

 Grey: Commercial1. Yellow: Commercial2

 Can’t show PostgreSQL on this chart

Some of the tests from the last slide are charted here
(the line for PostgreSQL can’t be shown). The blue bar
shows the unachievable 16 orders per clerk.
StrongDBMS is the orange one,, and the other two bars
are the commercial DBMS tested.

9

Better performance explained
OCC only checks for conflicts on COMMIT

And then First Committer Wins (FCW)

DBMS literature assumes this brings high costs

And unnecessary rollbacks

 But the demo proves that OCC+FCW works

Even when the load is high

 Each transaction works in isolation until commit point

Other DBMS keep checking and abort on potential conflict

Optimistic keeps open the possibility someone will change their mind

 But also the granularity of conflict detection is better..

A full analysis is in the conference paper. With optimistic concurrency
control, all checking for conflicts is delayed until the client wishes to
COMMIT their transaction. And then, if there are no conflicts, the
commit happens immediately (the file is locked just for this). This is often
called First Committer Wins. In DBMS literature, the conventional
wisdom is that this brings higher costs and unnecessary rollbacks.

But the demo proves that the combination of optimistic concurrency
control and first committer wins works well, even when the concurrency
is high.

Each transaction works in isolation until the commit point, whereas other
DBMS including PostgreSQL keep detecting for possible conflict and abort
when completion cannot be guaranteed.

For the particular sources of conflict here, StrongDBMS also has a better
granularity for detection of conflicts, described in the next slide.

10

Conflict handling in StrongDB

 Finer than row locking! 3 levels of constraint:

 If rows not selected by specific keys, report conflict if any
columns have been updated by another transaction

 Else for rows selected by specific key values, limit check to
updates of selected records, or to updates of keys

 Else raise conflict on any other update to the table that
happened since start of transaction

 This approach has been used by PyrrhoDBMS since 2005

Other DBMS including PostgreSQL have a different test

The conflict detection used by StrongDBMS is somewhat finer than row
locking. It is not new, as Pyrrho has used the same algorithm since 2005. The
actual words in Pyrrho’s source code are reproduced in the conference paper.

There are three levels of constraint (applied at the end of the transaction),
depending on what has been read from a table by the transaction.

A: If all rows have been accessed, or the rows have been selected otherwise
than by key values, report conflict if any columns have been updated by
another transaction.

B: If one or more rows have been accessed using specific key values, we can
limit the check to updates of these records or updates of key columns.

C: If things are more complicated, any update to the table that has happened
since the start of the transaction will cause the transaction to be aborted.

This is the second reason for the PostgreSQL result: their test for conflict is
different.

11

Workarounds

StrongDBMS and PyrrhoDB allow only serialisable tx

Reducing the isolation level for other DBMS led to

better throughput

Though we saw some incorrect operation of a commercial

product for these levels

Escrow methods can also help to avoid hot spots such

as running totals and next order

With commutative and increment semantics (resp.)

These need changes to application protocols

These two DBMS only allow serialisable transactions.
Theoretical arguments show that in most cases REPEATABLE-
READ isolation is good enough to ensure consistency, and
the other DBMS had better throughput with this isolation
level.

There are other ways of improving the performance of
commercial DBMS in situations of high concurrency for the
sorts of conflict that occur here.
In particular, escrow methods allow running totals to be
maintained using commutative semantics, and the next-
order-number problem to be solved using increment
semantics. But such mechanisms need changes to
application protocols, and would be a departure from the
TPCC specification.

12

Conclusions

 The study reported here makes a case for extending
optimistic algorithms to other database products

 This would help to remove the “impedance mismatch”
between application and DBMS protocols

Myths about OCC are deeply entrenched in the
database community, but it is time for better and more
considered analysis

 The demonstration code and PyrrhoV7 alpha is on
Github, along with further documentation and
resources

These optimistic algorithms could be used in other

database products. There is occasionally discussion in

the literature about the mismatch between optimistic

application protocols and lock-based database protocols.

We feel this demonstration has exposed some of the

comments about optimistic concurrency control to be

myths. It is time for better and more considered analysis

of the design choices involved.

The references include locations of publicly-available

demonstration code and other resources.

13

References
 M. Crowe and C. Fyffe, “Benchmarking StrongDBMS”, Keynote speech, DBKDA 2019,

https://www.iaria.org/conferences2019/filesDBKDA19/MalcolmCrowe_CallumFyffee_Keynote_-
BenchmarkingStrongDBMS.pdf

 M. Crowe, An introduction to the source code of the Pyrrho DBMS. University of Paisley, 2007

 F. Laux and T. Lessner, “Escrow serializability and reconciliation in mobile computing using
semantic properties.” International Journal on Advances in Telecommunications 2.2, pp. 72-87, 2009

 F. Laux and T. Lessner, “Transaction processing in mobile computing using semantic properties.”
2009 First International Conference on Advances in Databases, Knowledge, and Data Applications.
IEEE, pp. 87-94, 2009

 F. Raab, W. Kohler, and A. Shah, “Overview of the TPC-C benchmark: The Order-Entry Benchmark”,
Transaction Processing Performance Council, Tech. Rep., 2013,
http://www.tpc.org/tpcc/detail5.asp

 TPCC specification

http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf

 GitHub, https://github.com/MalcolmCrowe/ShareableDataStructures

14

