
My name is Fritz Laux. I’m a retired professor from Reutlingen
University where I was responsible for the database teaching and
research since the start of our department.

I am a cofounder of DBTechNet, a European initiative of academics
and industry to improve and promote database education.

Over the years I was part of three EU-funded projects and numerous
research and development projects in cooperation with industry.

With 40 years of experience in database modelling and design I
learned about the importance of database modelling. Data modelling
is, and always will remain a crucial part of SW development.

As fashions and practices come and go, I tried to combine the best
ideas.

This is why my recent work focusses on Graph Data Models.

1

The Typed Graph Model (TGM)

2

What can you expect from this presentation?

First I will point out some weaknesses of the original GM and
suggest enhancements to make it ready for data modelling.

It will quickly become clear, that we need to capture more
semantics.

Second, this leads to the Typed Graph Model (TGM) which
provides more semantics and ensures data integrity .

The talk is built around examples for modelling typical relational-
, and object-oriented structures by using the TGM.

During the presentation we will answer the following questions:

 Which enhancements are needed?

 What is the semantic expressiveness of our model compared
to competing models?

 Is it better matching the way we communicate reality?

 Is there support for multiple abstraction levels?

The presentation will conclude by some modelling guidelines for the
TGM.

The Typed Graph Model (TGM)

The popularity of the Graph Model (GM) stems primarily from its
application to social networks. Even if the flexibility of the GM is tempting,
its schema-less application is prone to data quality problems.

• Robinson and his colleagues from Neo4J recommend in their book to
use "Specification by Example", which uses example objects.

This rises the question if such an instance level model can be used as a
schema model as well.

• Let us use an example taken from Robinson's book.

It shows a User named Billy with its 5-star Review on a Performance dated
2012 July 9th .

• The problem with this is that we cannot exemplify all situations.

For a good data quality, a review should depend on the existence of
a user and a performance. But this cannot be derived from an
instance model, that is to say, from only one example.

From this example we cannot know if Billy is allowed to have multiple
reviews.

• This means that we have to deal with class things (like a generic
Person) and not only with real objects (like Billy) and specify if a
relationship is mandatory or optional.

3

The Typed Graph Model (TGM)

Let us start with a short recap of the original graph definition.

A mathematical Graph G is a tuple consisting of a set of Vertices V
and a set of Edges E.
An edge is defined by the pair of vertices that connect these vertices.
Vertices are alternatively called Nodes; they can be numbered for
identification and the edges may have a weight for calculating path
costs.
• The main shortcomings for data modelling are first of all, that real

world objects have structure and properties, which cannot be
distinguished in the original GM.

This weakness was tried to overcome with graph
enhancements, like labels and properties attached to the
vertices.

• Second, the GM is instance based and therefore captures only a
particular situation as we have already seen in the previous slide.
The GM cannot express structural constraints.

4

The Typed Graph Model (TGM)

5

There have been some research on using the GM on a schema level.
The nodes were considered as classes and edges are not instances
any more but edge types. The proposed models usually fail when
edge cardinality is necessary or models make no sufficient distinction
between nodes, properties and their respective data types.

In order to overcome the restricted modelling capabilities we need
mainly two extensions:

(1) More modelling elements, and

(2) Clear distinction between the abstraction levels: instance and
schema.

To solve the overloading of nodes we add properties and types to the
nodes which serve as classes on the schema level.

Nodes have a type. Types are stronger than labels because a type
represents the allowed structure and value range of an object
whereas a label is only a name.

Edges have a type too which defines the kind of association, for
instance, aggregation or generalization.

The Typed Graph Model (TGM)

6

• Our Typed Graph Model informally constitutes a property hyper-graph
that conforms to a schema.

• It consists of typed hyper-nodes N from a Typed Graph Schema TGS

• and typed hyper-edges E from Schema TGS

• Essential for the integrity of a data graph instance is the

homomorphism that maps each instance element to a schema
element that defines its type and ensures the integrity of the instance.

• The Typed Graph Schema TGS offers min-max cardinality for each
edge endpoint and supports additional integrity constraints.

• We use the UML class notation for visualizing nodes and UML
associations for edges as it provides a compact rendering and
extensions using constraints.

The fact that hyper-nodes and any data types are supported, including
user-defined complex data types gives the TGM the potential to build
schemata on different abstraction levels as we will see in the second
example. This is very important to keep large data models manageable.

Next we turn back to our initial example from Robinson’s book and show
how it will be modeled and improved.

The Typed Graph Model (TGM)

7

• On the left we have Robinson‘s example amended to show that Billy is
allowed to write more than one Review. We use the same visualization
as in their book.

• The schema on the right uses UML for better visual clarity of both
levels.

• The function F maps the User to the data type Person which ensures
that the User must have exactly one name. This is indicated by the
number 1 in brackets. The Review itself is tied to the complex type
Review with a mandatory Rating and an optional Review text. The
Performance can have 2 properties, an optional title and a mandatory
date. Even the date format is clearly prescribed by a format template.

The association cardinalities between Person and Review signify that a
Person has at least one Review. The mapping F ensures that there are no
Users without Review.

The homomorphism F preserves structure between both graph levels.
This means, that wrote review instances are tied to the 1 to many relation
and therefore no second author is allowed to link to Billy's reviews.

A Review always refers to exactly one Performance, but, a Performance
may have any number of Reviews, including none.

The Typed Graph Model (TGM)

In this example we demonstrate the modelling capabilities and its semantic
expressiveness.

The graph schema represents a commercial enterprise that sells products
and parts to customers. The enterprise assembles products from parts and
if the stock level is not sufficient, it purchases parts from different suppliers.

The figure models this situation using TGM in UML rendering.

It demonstrates the abstraction power of the TGM showing two schema
abstraction levels.
The upper part (a) shows the model on a detailed level. The properties are
suppressed in the diagram for simplicity, except for Customer and
CustOrder.

The schema is grouped into 3 disjoint sub-graphs depicted with dashed
lines.

In the lower part (b) these sub-graphs are shown as hyper-nodes. This
allows a simplified and more abstracted view of the graph model.

• Also, some aggregate properties (for example, #orders and the total of
customer orders) are shown to illustrate the modelling capabilities. The
hyper-edges connecting these abstracted nodes must use the most
general multiplicity of the edges it combines.

• In our example the edge orders/from combines two edge types, the
orders edge - with an optional 1 - 1 multiplicity and the from edge - with
unlimited multiplicity, which leads to the most general multiplicity.

8

The Typed Graph Model (TGM)

The TGM models a relational data structure in a straight forward
manner:

• The table name is used as node label and the attributes are used
as node properties including their data types.

• If we have a foreign key relationship, it is mapped to an edge with
many to one cardinality. The foreign key attribute k2 can be
omitted because the edge carries already the necessary
information.

• A tuple of a join table depends on the existence of the foreign
keys. Therefore we need to attach the non-key attribute Col in our
example here

 as property of the edge-type linking the tables. This is rendered in
UML as an association class.

9

The Typed Graph Model (TGM)

Because we already use UML for rendering the TGM, it is easy to see
that classes correspond one-to-one with typed hyper-nodes. Any
methods are simply ignored as we only deal with the network
structure of the Object-Oriented Model.

Any complex internal class structure can be directly modeled by
appropriate data types.

• The UML provides a rich set of association types, which need to
be mapped to the types of the edges. Our TGM provides types not
only for nodes but also for edges

• With this information it is also possible to model different
association types like aggregation, generalization, etc. Even user
defined associations are possible, for instance, an aggregate
could be further qualified as
un-detachable or detachable composition.

The arrow of the edge only indicates the reading direction of the
association name but does not limit the navigation of the TGM.

10

The Typed Graph Model (TGM)

The Object-Oriented Model (OOM for short) and the TGM share the
same UML notation. Any modelling element of OOM has a unique
UML rendering and corresponds to a distinct TGM modelling element.
This means, any object-oriented structure can be represented as a
TGM.

This indicates that TGM is stronger than the OOM if only data
structuring is concerned.

• The OOM is a strictly stronger model than the RM, ERM, and XML
Schema because all its modelling elements have unique
counterparts in OOM if we use user defined data types.

In fact, it is possible to define a user defined datatype, for example,
in XML schema and use it in a TGM model to represent a hierarchical
structure.

11

The Typed Graph Model (TGM)

Let me now answer the questions from the beginning of my talk:

Is the TGM suitable for data schemas?

Yes, we have seen the model is applicable on schema and instance
level.

It provides sufficient semantics by using 4 modelling elements, namely
nodes, properties, labels and edges. Each element has a data type to
ensure data integrity.

Is it better matching the way we communicate reality?

No, the models considered in the examples all rely basically on objects
and associations even if they use different names.

What is the semantic expressiveness of the TGM?

The TGM has better modelling power than the prevalent models. This
was only argued and shown by examples. The problem with a formal
proof is that there are many variants of the Object-Oriented Model.

Is there support for multiple abstraction levels?

There is no special notation for it, but with hyper-nodes and hyper-
edges. It is however possible and the responsibility of the designer

What are Consequences of using the TGM vs. other data models?

In general, there is no real benefit as the modelling decisions still
remain the same. There is however no semantic mismatch with TGM if
the target database is a Graph Database or if link analysis is important.

12

The Typed Graph Model (TGM)

Our conclusion is:

The TGM is designed to be used on the meta-level.

This means that nodes represent entity sets or classes with
properties that define the details.

The use of UML is preferred for a compact visual
representation.

The model is not orthogonal which gives the freedom but also
the burden for modelling decisions. The consequence is that it
is hard to establish quality criteria for modelling.

When using ternary or higher order edge types it is not always
easy to decide on the correct cardinality.

In real world scenarios the TGM like other model tends to become
large.

It may help to suppress properties in the diagram and provide
separate lists for properties.

Overview diagrams which use higher abstraction level
aggregates can provide a view that is easier to comprehend.

To model partial structures separately may help to reduce
complexity.

13

The Typed Graph Model (TGM)

Our work started out from Robinson‘s book and involved more than 20 sources
listed in the paper, out of which we present here the 4 most important ones.

14

The Typed Graph Model (TGM)

