Title: A Graph Database Storage Engine for Provenance Graphs

The First Author: Changhong Liu

The Second author: Hancong Duan

Presenter: Changhong Liu

Email: 314979677@qq.com
Name: Changhong Liu
Organization: School of Computer Science and Engineering, University of Electronic Science and Technology, Chengdu, China.

I obtained my bachelor's degree from College of Computer & Information Science Southwest University in 2018. Now I’m studying for a master's degree in the school of computer science and Engineering of UESTC. My research filed is the distributed database and storage. Recently, I have been working on graph computing and graph database.

Project experience:
- Developing a distributed memory column database
- Developing a distributed graph database
Challenges

1. A great graph-partitioning algorithm can reduce the communication overhead in the distributed graph database. A great graph-repartitioning algorithm can keep the load balance of the distributed graph database.

2. Ensuring that the proximity of graph-structured data is maintained on disk.

3. It is a challenge to implement the distributed transaction because of the uniqueness of distributed graph database.
About the first challenge:

- Large scale graph is partitioned in a distributed way.
- Streaming partition algorithm such as HDRF.
About the second challenge:

- Each node and edge is assigned an store ID. We have designed three algorithms to assign store ID: Hash, Layer Priority, deepwalk-partition.

- Each node and edge is sequentially stored in the file by sorting the store ID. Then the database reads the graph-structured data with the granularity of micro block.
About the third challenge:

We created several different types of locks to ensure that the transaction of our graph database can reach RR isolation level and try not to affect the parallelism of transactions.
Distributed Graph Database

Background:
- Storing massive graph-structured data
- Meeting the requirements of knowledge graph
- Can query time-series data
- Distributed graph computing

Date: 2018.09 ~ up to now

Status: We have a complete distributed graph database system. We are further optimizing this system.
Distributed Memory Column Database

Background:
- Meeting the requirements of massive data processing
- Minimizing the query time
- Minimizing memory usage

Date: 2015.9 ~ up to now

Status: We have a complete distributed memory column database system. We are further optimizing this system. Its performance is faster than Spark at present.
Future plans

- Researching efficient distributed computing scheduling algorithm.

- Researching a high performance distributed storage system based on new hardware and new technology.

- Researching the optimization of database query and storage through machine learning.
THANKS FOR YOUR WATCHING