Induced acyclic subgraphs with optimized endpoints Learning strategies

Moussa Abdenbi, Alexandre Blondin Massé & Alain Goupil

Moussa Abdenbi Université du Québec à Montréal abdenbi.moussa@courrier.uqam.ca



M. Abdenbi, A. Blondin Massé & A. Goupil

UQÂM

### About me

- My name is Moussa Abdenbi.
- I am a Ph.D student at Université du Québec à Montréal.
- I work on graph theory, specifically on finding induced and acyclic subgraphs of a directed graph.
- I am also working on applications of my research in computational linguistics.

# Introduction

### Motivation

- Learning a new language or acquiring specialized vocabulary
  - $\rightarrow\,$  Direct learning: seeing, hearing, smelling, tasting, touching, interacting, ...
  - $\rightarrow\,$  Learning by definition: reading a definition or being explained something
- Learning a word by definition is easier than learning word directly

#### Question

How to maximize the *learning by definition* approach?

### Context

- A strategy is an ordered sequence of words
  - $\rightarrow$  Carefully choose these words
- Some psycholinguistic criteria
  - $\rightarrow~$  The age the word is acquired
  - $\rightarrow~$  Rate of occurrence in a given corpus
- In this work, we provide a way to select strategy by using graph theory
  - $\rightarrow\,$  We focus on strategies for learning by definition approach

## Preliminaries

## Vocabulary (1/2)

Recall some definitions of graph theory :

- Directed graph (digraph) D = (V, A)
  - ightarrow ~V is a set of vertices
  - $\rightarrow$  A is a set of arcs (ordered pairs of vertices)

• Subgraph 
$$I = (V_I, A_I)$$
 of  $D = (V, A)$ 

$$\rightarrow V_I \subseteq V$$

$$\rightarrow A_I \subseteq \{(u,v) \in A \mid u,v \in V_I\}$$

 $\rightarrow$  It is **induced** if  $A_I = A \cap V_I \times V_I$ , denoted by  $I = D[V_I]$ .

• Path between  $u_0 \neq u_k$  is a sequence  $p = (u_0, u_1, \dots, u_k)$  such that  $0 \leq i \leq k - 1$ ,  $(u_i, u_{i+1}) \in A$  or  $(u_{i+1}, u_i) \in A$ 

 $\rightarrow p$  is called **directed**, if  $0 \leq i \leq k-1$ ,  $(u_i, u_{i+1}) \in A$ 

### Vocabulary (2/2)

- Circuit is a directed path  $p = (u_0, u_1, \dots, u_k)$  where  $(u_k, u_0) \in A$
- **Connected graph** D = (V, A) if there is a path between any two vertices
- Acyclic digraph D if it has no circuit
- **Degree** of  $u \in V$ 
  - $\rightarrow$  **Out-degree**  $deg_D^+(u) = |\{v \in V \mid (u, v) \in A\}|$
  - $\rightarrow$  In-degree  $deg_D^-(u) = |\{v \in V \mid (v, u) \in A\}|$
- Source or sink  $u \in V_I$ ,

→ if 
$$deg_D^-(u) = 0$$
 then  $u$  is a source  
→ if  $deg_D^+(u) = 0$  then  $u$  is a sink

## Examples



- (11, 5, 1, 7) is a directed path and (0, 5, 1, 0) is a circuit. *I* and *J* are subgraphs
- I is not induced :

 $\rightarrow$  Arc (11,5) is not in *I*, when  $11 \in I$  and  $5 \in I$ .

- $deg_D(11) = deg_D^+(11) + deg_D^-(11) = 3 + 1$
- $deg_{I}(11) = deg_{I}^{+}(11) + deg_{I}^{-}(11) = 2 + 0$
- J is induced and acyclic :
  - $\rightarrow$  Vertex 11 is a source and vertex is 7 is a sink in J.

# Lexicon

## Digraph dictionary

- Dictionary as a directed graph
  - $\rightarrow\,$  Each word on the dictionary is a vertex in the digraph
  - $\rightarrow$  Arc ( $w_1, w_2$ ) if and only if  $w_1$  appears in the definition of  $w_2$



## Strategies

- Basically a strategy is a subgraph :
  - There is no cyclic words definition
    - ightarrow The subgraph is acyclic
  - Select words that appear in a large number of definitions
    - $\rightarrow~$  Maximize the difference between sinks and sources
  - Pick all arcs between choosen words
    - $\rightarrow~$  The subgraph is induced
  - Focus learning on a specialized vocabulary
    - $\rightarrow~$  The subgraph must contain a fixed set of vertices
- Induced acyclic subgraphs with optimized endpoints

# Complexity of the problem

### Mathematical formulation

- $S_D$  the set of all subgraphs of D = (V, A)
- $\Delta(I) = p_I s_I$ 
  - $\rightarrow s_I$  is the number of sources
  - $\rightarrow p_I$  its number of sinks

#### Optimization criterion

Maximize the function  $\Delta$  for induced and acyclic subgraph of size  $1 \leq i \leq |D|$ 

## Problem formulation

#### Decision problem

Given a digraph D = (V, A), a set of vertices  $M \subset V$  and two integers iand  $\delta$ , does there exist an induced and acyclic subgraph of D of size icontaining M, such that  $\Delta(I) = \delta$ ?

#### $\rightarrow \, \text{NP-complete}$

#### Optimization problem

Given a digraph D = (V, A) and  $M \subset V$ , what is the maximal value  $\Delta(I)$  that can be realized by an induced and acyclic subgraph I of D of size i and containing M, for  $i \in \{|M|, |M| + 1, ..., |D|\}$ ?

 $\rightarrow \mathsf{NP}\text{-hard}$ 

# Algorithms

#### Greedy algorithm

- Add the most interesting vertices
  - $\rightarrow$  Starting with I = D[M] until |I| = i
- The variation they bring to  $\Delta(I)$

ightarrow The greater the value a vertex brings, the greater its interest

### Tabu algorithm

- Increase  $\Delta(I)$  by browsing *neighborhoods* of I
- A *neighbor* of *I* is an induced and acyclic subgraph *I*', such that,

$$\begin{array}{l} \rightarrow \ M \subset V_{I'} \\ \rightarrow \ |I| = |I'| = i \\ \rightarrow \ |V_I \cap V_{I'}| = |V_I| - 2 = |V_{I'}| - 2 \end{array}$$

# Experimentation

#### Dictionaries

- The Wordsmyth Illustrated Learner's Dictionary (WILD)
  - $\rightarrow~$  4244 vertices and 59478 arcs
- The Wordsmyth Learner's Dictionary-Thesaurus (WLDT)
  - $\rightarrow~$  6036 vertices and 29735 arcs
- The Wordsmyth Children's Dictionary-Thesaurus (WCDT)
  - $\rightarrow~20128$  vertices and 107079 arcs

Costs

- Learning by definition, if we know all the words occurring in a definition, then cost is 0
- 1 otherwise

## Psycholinguistic strategies

- Brysbaert-AOA : words ordered according to their age of acquisition
- Brysbaert-Concreteness : words ordered from most concrete to most abstract
- Brysbaert-Frequency : words ordered by their rate of occurrences
- Childes-AOA : words from Child Language Data Exchange System project, ordered with respect to their age of acquisition
- Frequency-NGSL : word lists designed and ordered to help students learning English

## Graph theory based strategy

- Algorithms with  $M = \emptyset$ 
  - $\rightarrow\,$  Measure correlation between cost and optimization criterion  $\Delta$
  - $\rightarrow\,$  Psycholinguistic strategies are designed to learn an entire language
- Induced acyclic subgraphs with optimized endpoints
- Vertices of subgraphs considered as a strategy
- Ordered according to their out-degree, from highest to lowest

#### Comparison criteria

- cost: total number of words learned directly
- *efficiency*: ratio of number of words learned over number of words learned directly

### Subgraphs computation

- Large size dictionary digraphs
  - $\rightarrow$  Metaheuristics.
  - $\rightarrow\,$  Greedy algorithm solution as input to tabu search

### Results

| Dictionary |        | Subgraph | Childes | Freq. | Brysbaert |          |       |
|------------|--------|----------|---------|-------|-----------|----------|-------|
|            |        | strategy | AOA     | NGSL  | AOA       | Concret. | Freq. |
| WILD       | size   | 50       | 1981    | 1169  | 1369      | 2417     | 1188  |
|            | cost   | 3013     | 3174    | 3079  | 3079      | 3207     | 3059  |
|            | effic. | 1.40     | 1.33    | 1.37  | 1.37      | 1.32     | 1.38  |
| WLDT       | size   | 200      | 1580    | 697   | 1277      | 2366     | 957   |
|            | cost   | 917      | 1803    | 1088  | 1530      | 2485     | 1296  |
|            | effic. | 6.58     | 3.34    | 5.54  | 3.94      | 2.42     | 4.65  |
| WCDT       | size   | 300      | 3316    | 1122  | 2879      | 5974     | 1995  |
|            | cost   | 2431     | 4366    | 2777  | 4016      | 6616     | 3315  |
|            | effic. | 12.23    | 6.81    | 10.70 | 7.40      | 4.49     | 8.96  |

- Subgraphs strategies are better
- Subgraphs strategies sizes are smaller than psycholinguistic strategies sizes

M. Abdenbi, A. Blondin Massé & A. Goupil

## Conclusion

- New problem, difficult to compare results
- Even with approximate solutions, learning strategies are better
- Further investigate linguistic applications
- Try other digital dictionaries

# Thank you!