

Development of a Process-oriented Framework for Security Assessment of Cyber Physical Systems

Katrin Neubauer, Rudolf Hackenberg

Katrin Neubauer Dept. Computer Science and Mathematics Ostbayerische Technische Hochschule Regensburg, Germany katrin1.neubauer@oth-regensburg.de

Katrin Neubauer

Education:

Since 02/2014	PhD Student (Applied Informatics) Georg-August University Göttingen (Germany)
03/2012 – 09/2013	Master (M.Sc.) Applied Research in Engineering Sciences University of Applied Sciences Regensburg (Germany)
10/2008 - 03/2012	Bachelor (B.Sc.) Medical Information Technology University of Applied Sciences Regensburg (Germany)
Work Experience:	
Since 01/2016	Research Assistant University of Applied Sciences Regensburg (Germany)
09/2013 – 12/2015	Project Manager "Information Security for small and medium-sized enterprises" R-Tech GmbH, Regensburg (Germany)
04/2012 – 08/2013	Research Assistant R-Tech GmbH, Regensburg (Germany)

Outline

- 1. Motivation Smart Grid Cyber Physical Systems
- 2. Security assessment of Cyber Physical Systems
- 3. Development of a Process-oriented Framework for Security Assessment of Cyber Physical Systems
- 4. Application example
- 5. Summary

Smart Grid

Smart Grid - Cyber Physical Systems

- Cyber Physical Systems (CPS) characteristics of future systems (Smart Grid)
- High scalable
 - Use case: data logging "electricity"
 - Data flaw: final consumers energy supplier
 - 2 million participants 192 million consumption values per day
- Volatile
 - Transfer of data every 15 min -> communication
- High data volume
 - 2 million participants 22 gigabyte data
- Different types of data
 - Customer data, power consumption, IP address

2. Security assessment of CPS

- Security assessment of CPS based on previous models not possible!
 - Consideration of business process
 - Consideration of development process
 - Consideration of sub-process
- Open: Security assessment of CPS
 - Data security according to the requirements of CPS
 - Consideration: entire process
- Development goal: process-oriented procedure for security assessment of CPS

Requirement criteria for security assessment of CPS

- Data security
- Scalability
- Real-time
- Performance
- Functional safety
- Volatility
- Security assessment of CPS must be developed according to this requirement criteria

3. Development of a Process-oriented Framework for Security Assessment of Cyber Physical Systems

- In the first step, the following requirement criteria are focused:
 - Data security (DS)
 - Scalability (SC)
 - Real-time (RT)
- Assessment of the Use Case
 - UseCase_{process} = (DS, SC, RT)
 - Security assessment results from the description of the process
- Approach
 - Analysis
 - Process and infrastructure
 - Data an information
 - Security Assessment UseCase_{process} = (DS, SC, RT)
 - Automated mapping of model based on the use case process and assignment of security measures

3. Development of a Process-oriented Framework for Security Assessment of Cyber Physical Systems

Requirement criteria CPS

Data security

1.Category: non sensitive data

- All data that do not contain any personal reference or have been made anonymous
- The security level is low
- 2.Category: high sensitive data I
 - All data which, through the combination of several data in category 2 and 3, have a personal reference, but do not have a direct reference themselves
 - The security level is minimal

3.Category: high sensitive data II

- All data which, through the combination of a further date in categories 2 and 3, have a personal reference, but do not have a direct reference themselves
- The security level is intermediate

4.Category: high sensitive data III (personal data)

- All data that are personal data or data worth protecting according to the Federal Data
 Protection Act
 <u>category</u> <u>description</u> <u>security level</u> <u>code</u>
- The security level is high

category	description	security level	coding
1. Category	non sensitive data	low	0
2. Category	high sensitive data I	minimal	1
Category	high sensitive data II	intermediate	2
4. Category	high sensitive data III	high	3

DS

3. Development of a Process-oriented Framework for Security Assessment of Cyber Physical Systems

Requirement criteria CPS

Scalability

- number of participating participants.
- Participants: users and devices
 - ≤ 1
 - 2 ≤ 100
 - 101 ≤ 10.000
 - ≥ 10.001

Real-Time

- System response time
 - ≤ 1 sec
 - $2 \sec \ge 1 \min$
 - 1 min ≥ 15 min
 - ≥ 15 min

description	coding
≤ 1	0
$2 \le 100$	1
$101 \le 10.000$	2
≥ 10.001	3

description	coding
$\leq 1 \text{ sec}$	0
$2 \sec \ge 1 \min$	1
$1 \min \ge 15 \min$	2
\geq 15 min	3

4. Application example

- SEGAL
 - Use case of Smart Grid
 - Value-added services
 - Ambient Assisted Living (AAL-services)
- Which process exists?
 - Process 1: Initialize device
 - Process 2: Delete device
 - Process 3: Update
 - Process 4: Transmit data
 - Process 5: Transmit emergency data

SEGAL: process 1 - initialize device

Data Security

category	description	security level	coding
3. Category	high sensitive data II	intermediate	2

Scalability

description	coding
$2 \le 100$	1

Real time

description	coding
$1 \min \ge 15 \min$	2

-> Process_{ID} = (2,1,2)

		initialize device
		•
•	ID user	communication request SMGW
•	Information	
	AAL device	establish communication
	device	•
•	ID smart meter	data exchange
	gateway	•

SEGAL: process 2 – transmit emergency data Data Security

category	description	security level	coding
3. Category	high sensitive data II	intermediate	2

Scalability

description	coding
$2 \le 100$	1

Real time

description	coding
$\leq 1 \text{ sec}$	0

-> $Process_{TED} = (2,1,0)$

Security assessment of SEGAL

Next Step:

Definition security measures

• Which authentication methods are suitable for the process (use case)?

5. Summary

New framework for security assessment: process-oriented procedure for security assessment of CPS

- Approach
 - Analysis
 - Process and infrastructure
 - Data and information
 - Security Assessment UseCase_{process} = (DS, SC, RT)
 - Automated mapping of the trust model based on the UseCase process and assignment of security measures

Next steps

- Automatization of the framework
- Definition of the security measures

Katrin Neubauer

katrin1.neubauer@oth-regensburg.de