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PhD student in Computer Science at the University of Milano-Bicocca.

Main research interests:
® Brain-related topics, especially brain computer interfacing;
® Signal processing: from electroencephalographic signals to underwater images;

o Artificial intelligence techniques in different applications: discriminate effects on
time-series, learn new features, classify memes.

v

Trying to learn new things especially by interacting with other researchers and with the
students | am tutoring, both in a Machine Learning course and for thesis completion.
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® is non-invasive;
® records brain activities and
functions;

® s characterized by frequency
bands;

® has temporal and spatial
resolutions.
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® s easily affected by noise;

® is heterogeneous.
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Features
® Type: limited;
® Selection/Extraction: a priori,
dimensionality reduction, ignores
spatial and type contributions;

® Purpose: improve performance.
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Literature Proposed
® Type: limited; ® Type: combinations of heterogeneous
features;
® Selection/Extraction: a priori, ® Selection: ignores a priori knowledge;

dimensionality reduction, ignores
spatial and type contributions;

® Purpose: improve performance. ® Purpose: access spatial and type
contributions.

%



Provide a benchmark to highlight spatial and feature type contributions

Contributions
@ Population-based approach;
® Heterogeneous features;
©® Evolutionary Feature Selection (EFS);

O Analyses of electrodes and feature type contributions.




Background

e Core: EFS — minimum number of
features, maximum classification
accuracy;

® Advantages: no field knowledge,
different solutions with single
execution.

e Literature: electrode set reduction,

subject-based approach, poor number
of instances [1][2][3].



Background

e Core: EFS — minimum number of Dataset: EEG Motor
features, maximum classification Movement/Imagery Dataset [4][5]
accuracy; ® Subjects: 109;

e Advantages: no field knowledge, ® |nstances for motor movement task:
different solutions with single 4924 = 2469 LH + 2455 RH;
execution. ® Instances for motor imagery task:

e Literature: electrode set reduction, 4915 = 2479 LH + 2436 RH;
subject-based approach, poor number e Sampling rate: 160 Hz;
of instances [1][2][3]. ® Normalization: min-max, Z-score.
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Pre-processing and tests

FEATURE
SELECTION

® FIR filter: 7 - 31 Hz;

© Test on non-normalized (NN-DS),
min-max normalized (MM-DS) and
nxk z-score normalized (ZS-DS) data.

Z ® Notch filter: 50 Hz;
|
e
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Proposed Approach

Feature Computation

1280 features = 64 electrodes x| 3 Hjorth
params + 2 frequency bands x (PSD
through Welch + 3 modalities x PSD

Z through Morlet) + statistical measures].
>

) FEATURE
COMPUTATION

nxm

FEATURE
SELECTION

® Time-domain: Hjorth parameters [6];

® Frequency-domain: PSD estimation
through Welch's method [7];

® Time-frequency domain: PSD
extraction through Morlet wavelet
convolution [8].
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Proposed Approach

Feature Selection
® Benchmark: principal component
analysis and a priori selection;
® EFS techniques: genetic algorithm,

particle swarm optimization, simulated
annealing

FEATURE Z ® wrapper approach — SVM with
S

a FEATURE
COMPUTATION

nxm

SELECTION radial basis and scaled gamma;
® objective functions: performance
only, performance/number of

nxk features [9]

( SVM
ACCURACY MODELS

f(x) = a(1—acc)+(1—a) (1 _ IXIf>

® Qutput: binary vector. \D
10



Proposed Approach

Classifiers

® Binary classification of LH/RH
movement/imagination;

) FEATURE
COMPUTATION

nxm

FEATURE
SELECTION

Fine/Medium/Coarse Gaussian SVM
models (5-fold cross validation);

e Dataset: (1) all the features; (2) a
nxk priori selected; (3) PCA dimensions;
(4) EFS selected;

® Total number of tests: 11.

Z ® Models: Linear, Quadratic, Cubic,
|

e SVM
ACCURACY MODELS
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Table: Best results obtained in each test on motor left/right hand movement!

Test SVM model Dataset  # features Accuracy (%)
all features cubic ZS-DS 1280 67.8
a priori mean Gaussian ZS-DS 100 62.7
PCA quadratic MM-DS 43 62.3
GA accuracy cubic ZS5-DS 662 67.2
GA trade-off cubic ZS-DS 646 67.8
PSO accuracy cubic Z5-DS 620 67.3
PSO trade-off quadratic ZS-DS 675 68.0
SA accuracy cubic ZS-DS 1117 68.3
SA trade-off cubic /5-DS 1116 67.8
agreement accuracy quadratic Z5-DS 264 66.4
agreement trade-off cubic /5-DS 308 67.5

INN-DS = non-normalized, MM-DS = min-max normalized, ZS-DS normalized data. @
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Table: Best results obtained in each test on motor left/right hand imagination?

Test SVM model Dataset # features Accuracy (%)
all features linear NN-DS 1280 64.3
a priori linear Z5-DS 100 59.7
PCA quadratic MM-DS 41 59.5
GA accuracy cubic ZS-DS 641 63.8
GA trade-off quadratic ZS5-DS 608 63.7
PSO accuracy cubic MM-DS 622 61.7
PSO trade-off quadratic ZS-DS 714 64.0
SA accuracy cubic ZS-DS 1114 63.6
SA trade-off cubic ZS-DS 1117 63.8
agreement accuracy cubic Z5-DS 272 62.4
agreement trade-off quadratic /5-DS 313 63.3

2NN-DS = non-normalized, MM-DS = min-max normalized, ZS-DS normalized data. @
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Electrodes agreement
e Left/right hand movement: a priori electrodes selected + frontal, parietal and
occipital electrodes;
® Left/right hand imagination: a priori electrodes selected + fronto-central, parietal
and occipital electrodes;

Feature types
e Left/right hand movement: great influence of statistical measures;
e Left/right hand imagination: great contribution from Hjorth activity parameter;

® Both tasks: presence of time-frequency related features;




Conclusion and Future Work

Dataset: EEG Motor Movement/Imagery Dataset;

K &

Better results on: z-score normalized dataset — heterogeneity mitigation;

Kl

Different feature types — broaden the analysis;

=

The EFS techniques contributes in the feature selection without the influence of
expert knowledge;

Kl

Different contributions of the brain areas and feature types;

O

Test with different fitness functions and on different datasets;

O

Define experimental protocol considering ergonomic issues.
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