
Human-Machine Interaction: EEG Electrode and Feature Selection
Exploiting Evolutionary Algorithms in Motor Imagery Tasks

Aurora Saibene, Francesca Gasparini

Aurora Saibene
a.saibene2@campus.unimib.it

Multi Media Signal Processing Laboratory
(https://mmsp.unimib.it/)

Department of Informatics, Systems and Communications
University of Milano-Bicocca

October 18-22, 2020

a.saibene2@campus.unimib.it
https://mmsp.unimib.it/


Short Resume

PhD student in Computer Science at the University of Milano-Bicocca.

Main research interests:

• Brain-related topics, especially brain computer interfacing;

• Signal processing: from electroencephalographic signals to underwater images;

• Artificial intelligence techniques in different applications: discriminate effects on
time-series, learn new features, classify memes.

Trying to learn new things especially by interacting with other researchers and with the
students I am tutoring, both in a Machine Learning course and for thesis completion.
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• is non-invasive;

• records brain activities and
functions;

• is characterized by frequency
bands;

• has temporal and spatial
resolutions.

5



Introduction [2/4]

Human-Machine Interaction: EEG Electrode and Feature Selection Exploiting
Evolutionary Algorithms in Motor Imagery Tasks

• is non-invasive;

• records brain activities and
functions;

• is characterized by frequency
bands;

• has temporal and spatial
resolutions.

5



Introduction [2/4]

Human-Machine Interaction: EEG Electrode and Feature Selection Exploiting
Evolutionary Algorithms in Motor Imagery Tasks

• is non-invasive;

• records brain activities and
functions;

• is characterized by frequency
bands;

• has temporal and spatial
resolutions.

5



Introduction [2/4]

Human-Machine Interaction: EEG Electrode and Feature Selection Exploiting
Evolutionary Algorithms in Motor Imagery Tasks

• is easily affected by noise;

• is heterogeneous.
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Features
• Type: limited;

• Selection/Extraction: a priori,
dimensionality reduction, ignores
spatial and type contributions;

• Purpose: improve performance.
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Literature
• Type: limited;

• Selection/Extraction: a priori,
dimensionality reduction, ignores
spatial and type contributions;

• Purpose: improve performance.

Proposed

• Type: combinations of heterogeneous
features;

• Selection: ignores a priori knowledge;

• Purpose: access spatial and type
contributions.
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Aim

Provide a benchmark to highlight spatial and feature type contributions

Contributions

1 Population-based approach;

2 Heterogeneous features;

3 Evolutionary Feature Selection (EFS);

4 Analyses of electrodes and feature type contributions.
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Background

• Core: EFS → minimum number of
features, maximum classification
accuracy;

• Advantages: no field knowledge,
different solutions with single
execution.

• Literature: electrode set reduction,
subject-based approach, poor number
of instances [1][2][3].
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Background

• Core: EFS → minimum number of
features, maximum classification
accuracy;

• Advantages: no field knowledge,
different solutions with single
execution.

• Literature: electrode set reduction,
subject-based approach, poor number
of instances [1][2][3].

Dataset: EEG Motor
Movement/Imagery Dataset [4][5]

• Subjects: 109;

• Instances for motor movement task:
4924 = 2469 LH + 2455 RH;

• Instances for motor imagery task:
4915 = 2479 LH + 2436 RH;

• Sampling rate: 160 Hz;

• Normalization: min-max, Z-score.
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Proposed Approach
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Proposed Approach

Pre-processing and tests

1 Notch filter: 50 Hz;

2 FIR filter: 7 - 31 Hz;

3 Test on non-normalized (NN-DS),
min-max normalized (MM-DS) and
z-score normalized (ZS-DS) data.
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Proposed Approach

Feature Computation

1280 features = 64 electrodes ×[ 3 Hjorth
params + 2 frequency bands × (PSD
through Welch + 3 modalities × PSD
through Morlet) + statistical measures].

• Time-domain: Hjorth parameters [6];

• Frequency-domain: PSD estimation
through Welch’s method [7];

• Time-frequency domain: PSD
extraction through Morlet wavelet
convolution [8].
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Proposed Approach

Feature Selection
• Benchmark: principal component

analysis and a priori selection;
• EFS techniques: genetic algorithm,

particle swarm optimization, simulated
annealing
• wrapper approach → SVM with

radial basis and scaled gamma;
• objective functions: performance

only, performance/number of
features [9]

f (x) = α(1−acc)+(1−α)

(
1− Nsf

Nif

)
• Output: binary vector.
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Proposed Approach

Classifiers
• Binary classification of LH/RH

movement/imagination;

• Models: Linear, Quadratic, Cubic,
Fine/Medium/Coarse Gaussian SVM
models (5-fold cross validation);

• Dataset: (1) all the features; (2) a
priori selected; (3) PCA dimensions;
(4) EFS selected;

• Total number of tests: 11.
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Discussion [1/3]

Table: Best results obtained in each test on motor left/right hand movement1

Test SVM model Dataset # features Accuracy (%)

all features cubic ZS-DS 1280 67.8
a priori mean Gaussian ZS-DS 100 62.7
PCA quadratic MM-DS 43 62.3

GA accuracy cubic ZS-DS 662 67.2
GA trade-off cubic ZS-DS 646 67.8
PSO accuracy cubic ZS-DS 620 67.3
PSO trade-off quadratic ZS-DS 675 68.0
SA accuracy cubic ZS-DS 1117 68.3
SA trade-off cubic ZS-DS 1116 67.8
agreement accuracy quadratic ZS-DS 264 66.4
agreement trade-off cubic ZS-DS 308 67.5

1NN-DS = non-normalized, MM-DS = min-max normalized, ZS-DS normalized data.
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Discussion [2/3]

Table: Best results obtained in each test on motor left/right hand imagination2

Test SVM model Dataset # features Accuracy (%)

all features linear NN-DS 1280 64.3
a priori linear ZS-DS 100 59.7
PCA quadratic MM-DS 41 59.5

GA accuracy cubic ZS-DS 641 63.8
GA trade-off quadratic ZS-DS 608 63.7
PSO accuracy cubic MM-DS 622 61.7
PSO trade-off quadratic ZS-DS 714 64.0
SA accuracy cubic ZS-DS 1114 63.6
SA trade-off cubic ZS-DS 1117 63.8
agreement accuracy cubic ZS-DS 272 62.4
agreement trade-off quadratic ZS-DS 313 63.3

2NN-DS = non-normalized, MM-DS = min-max normalized, ZS-DS normalized data.
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Discussion [3/3]

Electrodes agreement

• Left/right hand movement: a priori electrodes selected + frontal, parietal and
occipital electrodes;

• Left/right hand imagination: a priori electrodes selected + fronto-central, parietal
and occipital electrodes;

Feature types

• Left/right hand movement: great influence of statistical measures;

• Left/right hand imagination: great contribution from Hjorth activity parameter;

• Both tasks: presence of time-frequency related features;
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Conclusion and Future Work

4� Dataset: EEG Motor Movement/Imagery Dataset;

4� Better results on: z-score normalized dataset → heterogeneity mitigation;

4� Different feature types → broaden the analysis;

4� The EFS techniques contributes in the feature selection without the influence of
expert knowledge;

4� Different contributions of the brain areas and feature types;

� Test with different fitness functions and on different datasets;

� Define experimental protocol considering ergonomic issues.
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