Predicting Noise Power in Gm-C Filters through Machine Learning

Malinka Ivanova
Technical University of Sofia
College of Energy and Electronics
m_ivanova@tu-sofia.bg
THE AIM

A novel approach for predicting the total noise power in biquad low pass second order Gm-C filter through application of machine learning algorithms to be presented.
Gm-C Filters

- The increased interest to the continuous-time Gm-C filters is connected to their features like:
 - high bandwidth
 - possibilities for parameters tuning in large frequency diapason
 - very low passive sensitivity

- Their successful applications are:
 - in high frequency computers
 - communication systems
 - bio-medical devices
Noise in Gm-C Filters

- Noise depends on the design of the transconductor cell and on the Gm-C filters topology.
- The research efforts are focused on minimizing the noise level in the filters that will lead to the larger dynamic range and higher ratio signal/noise.
- The dominant noise in Gm-C filters is thermal noise, but flicker noise is also taken into consideration.
- The sources of noise are MOS transistors:
 - thermal noise (white noise) is generated in the channel as consequence of random charge carriers movement.
 - flicker noise (or pink noise) is product of random mobile carriers trapping and detrapping in the channel and in the gate oxide.
NOISE MODELING

• Several methods are known for description the noise features and Gm-C filters noise behavior
• All of them are based on noise analysis for a concrete filter solution
• Exception is the general method proposed in (S. Koziel, S. Szczepanski and R. Schaumann, 2003) - such approach is suitable for implementation in the form of CAD tools
ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING IN CIRCUIT MODELING

• One contemporary approach for modeling and analysis of electronic circuits and their parameters relays on algorithms in the areas of artificial intelligence, machine learning and deep learning.
RESEARCH METHOD

1. Use the transfer function of low pass second order Gm-C filter
2. Apply the signal flow graph theory for filter synthesis with noise sources
3. Derive the total noise power function in the case of CMOS transconductor

Create a predictive model

Normalize data

Prepare data set through theoretically calculations

Train data, machine learning

Denormalize data

Evaluate algorithms performance

Analyze the results
Assumption
- the capacitors in the Gm-C filter configuration are noiseless
- noisy OTA with transconductance g_m is modeled with a noiseless transconductor and an equivalent input referred noise voltage source U_n, which spectral density is $S_n(f)$
FILTER MODELING WITH NOISE SOURCES

Spectral density of one input referred noise voltage source

\[S_n(f) = \frac{S_{th}}{g_m} + \frac{S_f}{f} = \frac{8kT}{3g_m} + \frac{A}{c_{ox}W L f} = K' + \frac{K''}{f} \]

The total output noise voltage spectral density taking into account the Gm-C filter topology

\[S_{ntotal}(f) = \bar{v}_n^2 = \sum_{i=1}^{k} S_{n_i}(f) |H_i(j2\pi f)|^2 \]

The total noise power

\[P_{nout} = \int_{0}^{\infty} S_{ntotal}(f) df \]

The transfer function of low pass second order biquad Gm-C filter

\[T(s) = \frac{u_{out}}{u_{in}} = \frac{a_o}{s^2+b_1 s+b_o} = \frac{\omega_0^2}{s^2+\frac{Q}{\omega_0} s+\omega_0^2} \]
FILTER MODELING WITH NOISE SOURCES

Signal Flow Graph of second order buquad filter and equivalent transformations
FILTER MODELING WITH NOISE SOURCES
FILTER MODELING WITH NOISE SOURCES

\[H_1(s) = \frac{g_{m_2}}{s+g_{m_2}g_{m_5}} = \frac{g_{m_2}g_{m_6}}{sC_1g_{m_6}+g_{m_2}g_{m_5}} \]

\[S_{out1}(f) = \frac{g_{m_2}^2S_{n_2}(f)+g_{m_5}^2S_{n_5}(f)+g_{m_6}^2S_{n_6}(f)}{(2\pi fC_1)^2g_{m_6}^2+g_{m_2}^2g_{m_5}^2} \]

\[H_2(s) = \frac{g_{m_3}}{s+g_{m_3}g_{m_4}} = \frac{g_{m_3}}{sC_2+g_{m_4}} \]

\[S_{out2}(f) = \frac{g_{m_3}^2S_{n_3}(f)+g_{m_4}^2S_{n_4}(f)}{g_{m_4}^2+(2\pi fC_2)^2} \]

\[S_{out3}(f) = \frac{g_{m_1}^2S_{n_1}(f)+g_{m_2}^2S_{n_2}(f)+g_{m_5}^2S_{n_5}(f)+g_{m_6}^2S_{n_6}(f)}{(2\pi fC_1)^2(2\pi fC_2)^2g_{m_6}^2} \]

\[S_{ntotal}(f) = S_{out1}(f) + S_{out2}(f) + S_{out3}(f) \]

\[P_{nout} = \int_0^\infty S_{ntotal}(f) df = \int_0^\infty S_n(f) \left(\frac{3g_{m_1}^2}{(2\pi fc)^2g_{m_6}^2+g_{m_4}^2} + \frac{2g_{m_1}^2}{(2\pi fc)^2+g_{m_6}^2} + \frac{4}{(2\pi fc)^2} \right) \approx \int_0^\infty \frac{g_{m_1}^2}{f^2} + \frac{K_2}{f^3} \]

\[P_{nout} = -\left(\frac{K_1}{f} + \frac{K_2}{2f^2} \right) \]
Machine Learning and Predictive Modeling

- Demonstration of the research method with ANN algorithm

The constructed neural network

Deep learning and predicted output
MACHINE LEARNING AND PREDICTIVE MODELING

Deep learning – prediction chart

Theoretically calculated and predicted noise power
MACHINE LEARNING AND PREDICTIVE MODELING

Prediction charts

Decision Tree

Random Forest

Gradient Boosted Trees

Support Vector Machines
MACHINE LEARNING AND PREDICTIVE MODELING

- Constructed trees

Decision Tree

Random Forest

Gradient Boosted Trees

IF 0.411 < input1 ≤ 0.748 AND input2 > 0.045 THEN the predicted output IS 0.372
Machine Learning and Predictive Modeling

• Performance of machine learning algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>RMSE</th>
<th>AE</th>
<th>REL</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANN</td>
<td>0.008</td>
<td>0.005</td>
<td>11.85%</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>± 0.005</td>
<td>± 0.002</td>
<td>+ 4.51%</td>
<td></td>
</tr>
<tr>
<td>DT</td>
<td>0.007</td>
<td>0.004</td>
<td>6.52%</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>± 0.004</td>
<td>± 0.002</td>
<td>+ 3.99%</td>
<td></td>
</tr>
<tr>
<td>RF</td>
<td>0.036</td>
<td>0.025</td>
<td>32.60%</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>± 0.029</td>
<td>± 0.016</td>
<td>+ 10.59%</td>
<td>+ 0.003</td>
</tr>
<tr>
<td>GBT</td>
<td>0.113</td>
<td>0.051</td>
<td>14.94%</td>
<td>0.018</td>
</tr>
<tr>
<td></td>
<td>± 0.078</td>
<td>± 0.033</td>
<td>+ 10.76%</td>
<td>+ 0.018</td>
</tr>
<tr>
<td>SVM</td>
<td>61.947</td>
<td>61.901</td>
<td>99.80%</td>
<td>3838.173</td>
</tr>
<tr>
<td></td>
<td>± 0.997</td>
<td>± 1.098</td>
<td>+ 0.13%</td>
<td>± 122.279</td>
</tr>
</tbody>
</table>

→ ANN and Decision Tree algorithms are the best solutions for predicting the noise power in Gm-C filters. They are characterized with high accuracy.
MACHINE LEARNING AND PREDICTIVE MODELING

- Processing time

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Training time</th>
<th>Scoring time</th>
<th>Total time</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANN</td>
<td>3s</td>
<td>109ms</td>
<td>895ms</td>
</tr>
<tr>
<td>DT</td>
<td>61ms</td>
<td>65ms</td>
<td>251ms</td>
</tr>
<tr>
<td>RF</td>
<td>140ms</td>
<td>152ms</td>
<td>962ms</td>
</tr>
<tr>
<td>GBT</td>
<td>3s</td>
<td>43ms</td>
<td>17s</td>
</tr>
<tr>
<td>SVM</td>
<td>1s</td>
<td>65ms</td>
<td>4s</td>
</tr>
</tbody>
</table>
CONCLUSION

• **Machine learning** that is described as a field of artificial intelligence proposes powerful techniques and algorithms for electronic circuits’ analysis and design.

• Studying the circuits’ behavior through data about them allows a wide variety of predictive and analytical models to be created in support of engineers for decision making and problems solving.
CONCLUSION

• Also, machine learning gives huge opportunities for automation of engineering tasks decreasing the needed time, efforts and resources

• Such approach could be implemented in CAD and EDA software in order to present a technique for design and analysis of electronic circuits and devices that could decide engineering problems with high quality and efficiency
CONCLUSION

• Some machine learning algorithms like tree-based ones not only point out the final solution, but also describe one or several paths for its achievement.
• Other algorithms for deep learning which are based on artificial neural networks allow flexible and accurate approach for resolving the complexity of the problems.
• It seems that some machine learning algorithms are suitable for performing a given engineering task while the others cannot deal with it.
CONCLUSION

• This work explores the capabilities of machine learning to predict the noise power of Gm-C filters and it is proved that the learning algorithm should be precisely chosen for obtaining the best results.

• Also, it is proved that a predictive model with high accuracy can be created to facilitate the performance of prognostic and analytical engineering tasks.
CONCLUSION

• The future work will be focused on further exploration the capability of machine learning algorithms to facilitate engineering tasks, proposing possibilities for better understanding the behavior of electronic circuits

• The development of predictive and analytical models will be performed, exploring their valuable meaning in support of
 – Gm-C filters design – how the filter building blocks and elements to be chosen and arranged to form operable topology
 – filter analysis – what will be the filter and its building blocks reaction at different input stimuli

Picture is taken from: https://www.ansys.com/blog/what-is-crosstalk-electromagnetic-challenges-trends-electronics