Detecting Suicide Risk Through Twitter

Javier Fabra¹, Ana B. Martínez-Martínez², Yolanda López-Del-Hoyo³, María C. Pérez-Yus³, Bárbara Oliván-Blázquez³

Contact email: jfabra@unizar.es

¹ Department of Computer Science and Systems Engineering
² Faculty of Health Sciences
³ Department of Psychology and Sociology
Universidad de Zaragoza, Spain
About the presenter..

Javier Fabra
Email: jfabra@unizar.es

Associate Professor in the Department of Computer Science and Systems Engineering at the University of Zaragoza, Spain

- eHealth systems & services
- Data analysis & process mining
- Service-oriented computing
- Cloud architectures
Outline

• Context
• Methodology
• Tweet identification
• Classification of suicide risk groups
• Automatic classification
• Conclusions
• **Mental illness** is one of the main causes of illness worldwide
 – Depression affects over 300m people (WHO)
• **Suicide** is one of the more controversial causes of death
 – In Spain represents the main cause of unnatural death, doubling the number of deaths in traffic accidents
• **Social platforms** can be used to analyse the emotional state of people
 – Sometimes is an anonymous media
 – Exposes real-time data
• **Twitter** is one of the most widely used social media platforms worldwide
 – In this work, *we focus on Tweets written in Spanish* (note that the methodology can be applied to other languages)
We propose a framework for the detection of suicide risk through Twitter

- Retrieval of selected Tweets according to specific rules and classifications
- Analysis of Tweet collections - processing of information flows (streams) in real time
- Application of clustering and machine learning techniques that facilitate the automatic classification of the information obtained
- In base to the classification, triggering of corrective/prevention mechanisms

Our approach represents a full framework...

- Engineered and implemented using different technologies
- Structured around a multidisciplinary team of professionals in Health Sciences and IT
- As a result, it provides a useful prototype for suicide prevention and detection of real emotional states in the population
Methodology

Early detection & prevention of suicide risk

Primary Care / Family / Environment

Content analysis

Property extraction

Expert’s evaluation

Automatic classification

Risk analysis/prediction

Clustering
Tweet identification

• Large vocabulary of emotional terms compiled from different sources
 – *The Spanish adaptation of Affective Norms for English words* (ANEW)
 – *Spanish dictionary of the Linguistic Inquiry and Word Count* (LIWC)

• Addition of emotional properties (*primary + secondary*)
 – *Hierarchy of emotions* (Parrott, 2001)
 – *Tree of emotions* (Shaver et al., 1987)
 – We have integrated the Indico affective and emotional text processing tool as a service

• The Amazon Web Service (AWS) infrastructure has been used to deploy the framework
Classification of suicide risk groups

- Clustering techniques
 - *K*-means + *elbow* method
 - *Knime* data analytics platform
 - Input: 3051 Tweets

- A team of experts in Health Sciences and Medicine reviewed the data & results

<table>
<thead>
<tr>
<th>Cluster</th>
<th>#Tweets</th>
<th>Positivity</th>
<th>Anger</th>
<th>Joy</th>
<th>Fear</th>
<th>Sadness</th>
<th>Surprise</th>
</tr>
</thead>
<tbody>
<tr>
<td>#0</td>
<td>654</td>
<td>0.68</td>
<td>0.15</td>
<td>0.32</td>
<td>0.14</td>
<td>0.27</td>
<td>0.13</td>
</tr>
<tr>
<td>#1</td>
<td>884</td>
<td>0.80</td>
<td>0.24</td>
<td>0.23</td>
<td>0.15</td>
<td>0.26</td>
<td>0.12</td>
</tr>
<tr>
<td>#2</td>
<td>604</td>
<td>0.29</td>
<td>0.25</td>
<td>0.11</td>
<td>0.16</td>
<td>0.40</td>
<td>0.08</td>
</tr>
<tr>
<td>#3</td>
<td>909</td>
<td>0.42</td>
<td>0.24</td>
<td>0.09</td>
<td>0.22</td>
<td>0.39</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Suicide risk

- Low
- High

K=4
Automatic classification

- **LSTM neural network**
 - *Tensorflow* machine learning framework
 - 10 LSTM hidden layers / 20 neurons in each layer
 - 70% training data / 30% test data
Automatic classification

• The evaluation function returns an accuracy of 93.34% (K=4)

<table>
<thead>
<tr>
<th></th>
<th>C0</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
</tr>
</thead>
<tbody>
<tr>
<td>C0</td>
<td>191</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C1</td>
<td>1</td>
<td>267</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C2</td>
<td>4</td>
<td>1</td>
<td>151</td>
<td>16</td>
</tr>
<tr>
<td>C3</td>
<td>0</td>
<td>24</td>
<td>12</td>
<td>246</td>
</tr>
</tbody>
</table>

Success rate (Cluster 0) = 98.96%
Success rate (Cluster 1) = 99.26%
Success rate (Cluster 2) = 87.79%
Success rate (Cluster 3) = 87.23%
Conclusions

• We have presented a framework for the detection of suicide risk through Twitter
 – Deployed using AWS
• Very satisfactory and promising results (accuracy of 93.34%)
• Currently we are working on the connection with Primary Care Services
• The techniques developed in this work are easily adaptable to other contexts and studies
• Possible improvements
 – Use of different distance functions for clustering/K-means
 – Use of different classification techniques (Random Forest, SVM, ..)
Detecting Suicide Risk Through Twitter

Javier Fabra¹, Ana B. Martínez-Martínez², Yolanda López-Del-Hoyo³, María C. Pérez-Yus³, Bárbara Oliván-Blázquez³

Contact email: jfabra@unizar.es

¹ Department of Computer Science and Systems Engineering
² Faculty of Health Sciences
³ Department of Psychology and Sociology
Universidad de Zaragoza, Spain

The Fourteenth International Conference on Advanced Engineering Computing and Applications in Sciences
ADVCOMP 2020
October 25, 2020 to October 29, 2020 - Nice, France