The F-Measure Paradox
Presentation at ADVCOMP 2020

Tim vor der Brück
Fernfachhochschule Schweiz (FFHS)
Brig, Switzerland
tim.vorderbrueck@ffhs.ch

October 2020
1. Introduction

2. Properties of the Harmonic Mean

3. The F-Measure Paradox

4. Conclusion
2001: Diploma Degree at Saarland University

2001-2003: Scientific Assistant at the German Research Center for Artificial Intelligence (DFKI)

2003-2006: Scientist at the German Meteorological Service

2006-2010: PhD Student at the Distance University of Hagen

2011-2015: Postdoc at Goethe University Frankfurt am Main

2015-now: Research Associate at Lucerne University of Applied Science and Arts

2019-now: Lecturer at FFHS (Fernfachhochschule Schweiz)
Paradoxes have always fascinated people.
Typical characteristics: They exhibit a surprising behavior that is contrary to people’s believes.
There are quite a few identified paradoxes in mathematic and computer science.
Example: Proposition of Russel

There is not set that contains exactly the sets that does not contain itself
Proof by contradiction: Assume such a set exist. Does it contain itself?
Example: Proposition of Russel

- Case 1: It contains itself. This would contradict the assumption, that it can only contains sets that does not contain itself.
- Case 2: It does not contain itself. Then this must contain it, since it contains all sets that does not contains itself. Both case 1 and case 2 lead to a contradiction. Therefore such a set cannot exists.
Banach-Tarski-Paradox

- published in 1924 by Stefan Banach and Alfred Tarski
- First, a sphere is decomposed into parts
- By putting these parts together, one obtains two spheres of the same volume as the original
- It is named a paradox since it contradicts geometric intuition
Accuracy Paradox

- Obtained Accuracy of model above: 0.9986
- Predicting always the majority class: 0.999
- A machine learning model with lower accuracy can have higher predictory performance
Properties of the harmonic mean

- harmonic mean (HM) of two input values a, b always assumes a value inside the interval $[a, b]$
- HM is drawn to the smaller one of the two input values
- HM is zero, if one of the input values is zero
- If the HM coincides with one of the input values and is non-zero, then the second argument must also assume this value
- the sign of both input values must coincide
- formula: $H(a, b) = \frac{2ab}{a+b} = \frac{2}{\frac{1}{a} + \frac{1}{b}}$
What is $H(0, 0)$? Actually $H(0, 0) = \frac{2 \cdot 0 \cdot 0}{0 + 0} = \frac{0}{0}$

However, $H(0, 0) = 0$ is a sensible definition considering limits, since:

$$\lim_{a \to 0, b \to 0, \text{sign}(a) = \text{sign}(b)} \frac{2}{\frac{1}{a} + \frac{1}{b}} = \frac{2}{\infty} = 0$$

Therefore, in the remainder we assume $H(0, 0) = 0$
Harmonic Mean

Definitions:

a: Argument 1

b: Argument 2

Harmonic mean of a and b
Case: One of the inputs (a) is zero

\[a = 0 \implies H(a, b) = 0 \]
Properties of the harmonic mean

Case: Harmonic mean is zero

\[H(a, b) = 0 \not\Rightarrow a = 0 \]
Properties of the harmonic mean

Case: HM equals to one of its inputs and greater zero

\[a \neq 0, \ a = H(a, b) \Rightarrow b = H(a, b) \]
Properties of the harmonic mean

Case: HM equals to one of its inputs and the other one is greater zero

\[a > 0 \cap b = 0 \Rightarrow H(a, b) = 0 \not\Rightarrow a = 0 \]
Summary

<table>
<thead>
<tr>
<th>Proposition</th>
<th>HM</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a = 0 \Rightarrow H(a, b) = 0$</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>$H(a, b) = 0 \Rightarrow a = 0$</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>$a \neq 0 \land H(a, b) = a \Rightarrow b = a$</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>$a \neq 0 \land H(a, b) = b \Rightarrow b = a$</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
We give here proof for line 1 and 2 (3 and 4 see paper). For column F1: a:=precision, b:=recall
Note that a and b are interchangeable
Bochvar extension: NaN

- Precision (recall) can assume 0/0=NaN (Not a Number), if $TP = 0 \land FP = 0 (FN = 0)$
- NaN: absorbing element
- $\mathbb{R} \cup \{NaN\}, +$ is a semi-group

Computation rules: $a \in \mathbb{R}$

\[
\begin{align*}
 aNaN &= NaN \\
 a + NaN &= NaN \\
 a/NaN &= NaN \\
 a \cdot NaN &= NaN
\end{align*}
\] (1)
Proof of properties for F1-Score:

to be shown:

\[\text{prec} = 0 \nleftrightarrow F_1(\text{prec}, \text{rec}) = 0 \]

Counter-Example:

\[TP = 0, FN = 0, FP \neq 0 \]
\[\Rightarrow \text{rec} = NaN, \text{prec} = 0 \]
\[\Rightarrow F_1(\text{prec}, \text{rec}) = NaN \neq 0 \]
Proof.

\[F_1(\text{prec}, \text{rec}) = 0 \Rightarrow \text{prec} \neq \text{NaN}, \text{rec} \neq \text{NaN} \]
\[\Rightarrow TP + FP \neq 0 \quad (\ast) \]
\[\Rightarrow \frac{2 \text{prec} \cdot \text{rec}}{\text{prec} + \text{rec}} = 0 \]
\[\Rightarrow \text{prec} = 0 \lor \text{rec} = 0 \]

Case 1: \(\text{prec} = 0 \Rightarrow \text{Claim} \)

Case 2: \(\text{rec} = 0 \Rightarrow TP = 0 \)

\[\Rightarrow \frac{TP}{TP + FP} = 0 \Rightarrow \text{prec} = 0 \]
Conclusion

- Properties of the F1-Score contradicts properties of Harmonic mean
- Caused by special relationship between recall and precision and necessary inclusion of NaN
Implications

- Practical implications: basic assumptions about F1 score, precision, recall can be incorrect in certain cases (usually if NaN shows up)
- Shortcomings of proofs in general: NaN-case usually not covered. However, not so rare in practice due to
 - missing observations
 - potential uncomputability of values (NaN)