

A Context-enhanced Sector-based Indoor Positioning Library

Alexander Stelzhammer, B.Sc. Dr.-Ing. Jens Krösche

Presented by: FH-Prof. Dr.-Ing. Jens Krösche University of Applied Sciences Upper Austria Department of Mobility & Energy

jens.kroesche@fh-ooe.at

Presenter

Jens Krösche is a professor in the Department of Mobility & Energy at the University of Applied Sciences Upper Austria. His research interests lie in the fields of contextaware computing, geographical information systems, navigation and positioning systems, and mobile information systems. The presented work is based on the results of a student's master's thesis.

PREFACE

Agenda

- Introduction
- Fundamentals
- Related Work
- Concept
- Implementation
- Evaluation
- Conclusion & Future Work

Introduction

INTRODUCTION

Motivation

- Location is one of the most important context features
 - Real-time navigation
 - Locating specific items in warehouses
 - Orientation in a large building complex (hospital, airport, ...)
 - ...
- Localization outdoors thanks to multiple existing GNSS no problem, but
 - \rightarrow requires non-obstructed line of sight
 - \rightarrow not usable for indoor localization
 - \rightarrow complex algorithms necessary to achieve the same indoors

Is the same accuracy and precision required indoors as it is outdoors?

- Purely sector-based context-aware indoor positioning system
- Trade high accuracy for **robust and cheap positioning**
- No machine learning, artificial intelligence, or any form of data-based learning
- System is applicable to any building

Fundamentals & Related Work

FUNDAMENTALS & RELATED WORK

Basic Positioning Methods

- Proximity Sensing
- Lateration
- Angulation
- Pattern Matching/Fingerprinting
- Dead Reckoning

FUNDAMENTALS & RELATED WORK

Basic Positioning Methods

- Proximity Sensing
 - **Exploits** the **limited range** of coverage of their pilot signals
 - Position of target derived from base stations

Omnidirectional proximity sensing

- Fingerprinting
 - Position of target based on previously collected observations of the site
 - Two phases:
 - Off-line phase: collect RSS values at pre-defined positions to create a database
 - **On-line phase**: match real-time RSS values to database

• RADAR

one of the first approaches to exploit existing WiFi infrastructure

• Horus

applying probabilistic methods to fingerprinting

• Sectjunction

partitions the site according to RSS values to narrow the search space

Concept

Overview

• WLAN-based indoor positioning system

 \rightarrow follow the principles of proximity sensing \rightarrow use existing network infrastructure

• Divide building into **sectors**

 \rightarrow each access point inside a single sector

 \rightarrow reduce complexity

• Utilize filter pipeline to derive position estimate

CONCEPT

System Overview

- Components
 - Recording application
 - Simulation environment
 - Positioning library based on a filtering pipeline

Data Recording

- Features
 - Records various WiFi properties and sensor values
 - Predefined **routes** to establish calibration points
 - Waypoint scans at calibration points and Intermediate scans in regular intervals
 - Record/Pause and export features

CONCEPT

Recording Routes

- Background
 - Enable walkthrough simulation
 - Handle different scenarios
 - Based on building blueprints

CONCEPT

Route Simulation

- Features
 - Visualize level-based floor blueprints
 - Choose route to simulate
 - Visualize simulation data based on calibration points
 - Configure filtering pipeline
 - Visualize localisation
 sectors and positioning results
 - Manage simulation

Filter Pipeline

- Input
 - Scanned access points in near proximity
 - Sensor measurements of environment
- Output
 - Prioritized list of access points

Filter Pipeline

Process input to estimate sector

Implementation

IMPLEMENTATION

Iterations of Filter Pipeline

- Basic Pipeline
- Pressure Pipeline
- Graph (n = 1) Pipeline
- Blacklist Pipeline
- Graph (n = 2) Pipeline

IMPLEMENTATION

Basic Pipeline

Pressure Filter

- Track four most recent barometer measurements
- Derive type of movement from ambient air pressure
 - air pressure going down \rightarrow target moving up
 - air pressure going up \rightarrow target moving down

Graph (n = 1) Filter

- Limits involuntary sector jumps
- Limit estimates to be within 1 hops of previous estimation

- maximumNumberOfSuggestions:
- numberOfScansBlocked:

limit consecutive suggestions of a certain sector limit number of times a certain sector is blocked

Sector	Number of consecutive suggestions	Remaining blocks
4-1	1	0
4-2	2	2
4-3	2	1
3-19	0	0

Graph(n = 2) Filter

- Limits involuntary sector jumps
- Limit estimates to be within 2 hops of previous estimation

Evaluation

Scenarios

• Scenario #1: Change of Direction

At a certain point on the route, the target turns around and follows the route back

• Scenario #2: Change of Floors

Two different flight of steps are used on this route to change from a higher to a lower floor and back

• Scenario #3: Standing Still

The target standing still for an arbitrary amount of time at a certain point on the recording route

• Scenario #4: Round Trip

The target follows a regular round trip, starting from a distinct location and arriving at the same location again

Metrics

- Number of Correctly Estimated Sectors (NCES)
 - Parameterized \rightarrow tolerated distance

$$d_{acc} = \frac{n_{corr}}{n_{total}}$$

- Average Distance to Correct Sector (ADCS)
 - Non-parameterized

$$d_{avg} = \frac{\sum_{i}^{n} distance(pos_{est}, pos_{corr})}{n_{total}}$$

Performance Matrix

		Pressure	Blacklist	Graph (n = 2)
	NCES (td = 0)	0.640	0.640	0.640
Scenario 1: Change of Direction	NCES (td = 1)	0.980	1.000	0.980
	ADCS	0.380	0.360	0.380
	NCES (td = 0)	0.479	0.535	0.479
Scenario 2: Change of Floors	NCES (td = 1)	0.930	0.944	0.986
	ADCS	0.662	0.493	0.535
	NCES (td = 0)	0.718	0.590	0.744
Scenario 3: Standing Still	NCES (td = 1)	0.974	0.872	1.000
	ADCS	0.462	0.487	0.256
Scenario 4: Roundtrip	NCES (td = 0)	0.580	0.470	0.580
	NCES (td = 1)	0.960	0.920	0.950
	ADCS	0.470	0.610	0.470

NCES ... Number of Correctly Estimated Sectors ADCS ... Average Distance to Correct Sector

Performance Matrix

		Pressure	Blacklist	Graph (n = 2)
	NCES (td = 0)	0.640	0.640	0.640
Scenario 1: Change of Direction	NCES (td = 1)	0.980	1.000	0.980
	ADCS	0.380	0.360	0.380
	NCES (td = 0)	0.479	0.535	0.479
Scenario 2: Change of Floors	NCES (td = 1)	0.930	0.944	0.986
	ADCS	0.662	0.493	0.535
	NCES (td = 0)	0.718	0.590	0.744
Scenario 3: Standing Still	NCES (td = 1)	0.974	0.872	1.000
	ADCS	0.462	0.487	0.256
	NCES (td = 0)	0.580	0.470	0.580
Scenario 4: Roundtrip	NCES (td = 1)	0.960	0.920	0.950
	ADCS	0.470	0.610	0.470

Conclusion & Future Work

- Best results achieved with Graph (n = 2) Pipeline
- Almost perfect results according to NCES with tolerated distance of 1
 → most results off by only 1 sector
- Overall performance favorable
- **HOWEVER:** Cell approximation is not realistic enough

- Alternative cell approximation algorithms
 - \rightarrow signal propagation model
- More sophisticated filters
 - \rightarrow use more contextual information
 - \rightarrow analyze existing contextual information in detail

