A Visible Light Vehicle-to-Vehicle Communication System Using Modulated Taillights

Michael Plattner

Department Mobility and Energy
University of Applied Sciences Upper Austria
Hagenberg im Mühlkreis, Austria
Email: Michael.Plattner@fh-hagenberg.at

Gerald Ostermayer

Research Group Networks and Mobility
University of Applied Sciences Upper Austria
Hagenberg im Mühlkreis, Austria
Email: Gerald.Ostermayer@fh-hagenberg.at
 UPPER AUSTRIA
nemo
Research Group networks \& mobility

Presenter - Michael Plattner

- Michael Plattner, BSc MSc
- Age: 27
- born in Innsbruck, Austria
- Assistant Professor for Mobile Systems
at University of Applied Sciences Upper Austria
- PhD student
at Johannes Kepler University Linz

UNIVERSITY OFAPPLIED SCIENCES UPPER AUSTRIA

JOHANNES KEPLER UNIVERSITÄT LINZ

Research Topics

- Mobile Communication Systems
- Intelligent Transportation Systems
- Simulation and Modelling
- Connected Vehicles

Idea

Out-of-band channel using modulated taillights for V2V communication

Idea

V2V communication might be attacked by a man-in-the-middle

Idea

Identity of sender can be veryfied using out-of-band channel.

Requirements

- Use state-of-the-art LED taillights
- Camera used as receiver
- Visible light spectrum
- Not perceivable for the human eye

UDPSOOK - Modulation

- Undersampled Differential Phase Shift On-Off Keying
- Modulation frequency multiple of cameras FPS

$$
\text { e.g. } \quad f_{S}=30 H z \quad f_{\text {mod }}=120 H z
$$

- Utilizes rolling shutter effect of cameras
- Information encoded in the phase shift between frames

UDPSOOK

- Rolling shutter of DSLR camera
- Exposure time: $1 / 30$ s
- Recorded with a high-speed camera

UDPSOOK

- Rolling shutter of DSLR camera
- Exposure time: $1 / 30 \mathrm{~s}$
- Recorded with a high-speed camera

Mirror at 45° blocks the

UDPSOOK

- Rolling shutter of DSLR camera
- Exposure time: $1 / 30 \mathrm{~s}$
- Recorded with a high-speed camera

Mirror flips up and blocks the view finder.

UDPSOOK

- Rolling shutter of DSLR camera
- Exposure time: $1 / 30$ s
- Recorded with a high-speed camera

UDPSOOK

- Rolling shutter of DSLR camera
- Exposure time: $1 / 30 \mathrm{~s}$
- Recorded with a high-speed camera

UDPSOOK

- Rolling shutter of DSLR camera
- Exposure time: $1 / 30 \mathrm{~s}$
- Recorded with a high-speed camera

UDPSOOK

- Rolling shutter of DSLR camera
- Exposure time: $1 / 30 \mathrm{~s}$
- Recorded with a high-speed camera

UDPSOOK

- Rolling shutter of DSLR camera
- Exposure time: $1 / 30$ s
- Recorded with a high-speed camera

UDPSOOK

- Rolling shutter of DSLR camera
- Exposure time: $1 / 8000 \mathrm{~s}$
- Recorded with a high-speed camera

UDPSOOK

- Rolling shutter of DSLR camera
- Exposure time: $1 / 8000$ s
- Recorded with a high-speed camera

UDPSOOK

- Rolling shutter of DSLR camera
- Exposure time: $1 / 8000 \mathrm{~s}$
- Recorded with a high-speed camera

UDPSOOK

- Rolling shutter of DSLR camera
- Exposure time: $1 / 8000 \mathrm{~s}$
- Recorded with a high-speed camera

UDPSOOK

- Rolling shutter of DSLR camera
- Exposure time: 1/8000 s
- Recorded with a high-speed camera

UDPSOOK

- Rolling shutter of DSLR camera
- Exposure time: $1 / 8000 \mathrm{~s}$
- Recorded with a high-speed camera

UDPSOOK

- Rolling shutter effect
- Image captured line by line
- Fast moving objects get skewed

UDPSOOK

- Rolling shutter effect
- Image captured line by line
- Fast moving objects get skewed

UDPSOOK

- Rolling shutter effect
- Image captured line by line
- Fast moving objects get skewed

UDPSOOK

- Rolling shutter effect
- Image captured line by line
- Fast moving objects get skewed

UDPSOOK

- Rolling shutter effect
- Image captured line by line
- Fast moving objects get skewed

UDPSOOK

- Rolling shutter effect
- Image captured line by line
- Fast moving objects get skewed

UDPSOOK

- Rolling shutter effect
- Image captured line by line
- Fast moving objects get skewed

UDPSOOK

- Rolling shutter effect
- Image captured line by line
- Fast flickering light source turns into stripe pattern

UDPSOOK

- Rolling shutter effect
- Image captured line by line
- Fast flickering light source turns into stripe pattern

UDPSOOK

- Rolling shutter effect
- Image captured line by line
- Fast flickering light source turns into stripe pattern

UDPSOOK

- Rolling shutter effect
- Image captured line by line
- Fast flickering light source turns into stripe pattern

UDPSOOK

- Rolling shutter effect
- Image captured line by line
- Fast flickering light source turns into stripe pattern

UDPSOOK

- Rolling shutter effect
- Image captured line by line
- Fast flickering light source turns into stripe pattern

UDPSOOK

- Rolling shutter effect
- Image captured line by line
- Fast flickering light source turns into stripe pattern

UDPSOOK

- Rolling shutter effect
- Image captured line by line
- Fast flickering light source turns into stripe pattern

UDPSOOK

- Rolling shutter effect
- Image captured line by line
- Fast flickering light source turns into stripe pattern

UDPSOOK

- Rolling shutter effect
- Image captured line by line
- Fast flickering light source turns into stripe pattern

UDPSOOK

- Only a small portion of the stripe pattern is visible.
- The state depends on the position of the light source.

UDPSOOK

- Only a small portion of the stripe pattern is visible.
- The state depends on the position of the light source.

UDPSOOK

- Only a small portion of the stripe pattern is visible.
- The state depends on the position of the light source.

UDPSOOK

- Only a small portion of the stripe pattern is visible.
- The state depends on the position of the light source.

UDPSOOK

- Only a small portion of the stripe pattern is visible.
- The state depends on the position of the light source.

UDPSOOK

- Only a small portion of the stripe pattern is visible.
- The state depends on the position of the light source.

UDPSOOK

Without phase shifts:

With phase shifts:

UDPSOOK - In practice

UDPSOOK - In practice

UDPSOOK - In practice

UDPSOOK - In practice

UDPSOOK - In practice

UDPSOOK - In practice

System Overview

Channel Coding

- Message contains 128 -bit verification key
- Reed-Solomon channel coding
- RS(24/16) with 8-bit symbols
- Additional start symbol
- Code word length: 200 bit

	M	-	b	i	1	e	\square	C	O	m	p	u
0 x 01	0x4d	0x6f	0x62	0x69	0x6c	0x65	0x20	0x43	0x6f	0x6d	0x70	0x75
Start						essag	symbol					

t	i	n	g							
0x74	0x69	0x6e	0x67	0xae	0x48	0x78	0x6d	0x9d	0x03	0x88

Receiver - Camera

- Frame Rate: 30 FPS
- Exposure Time: 1/2000 seconds

Receiver - Camera

- Vehicle Detection with YOLO framework
- Every 20th frame for real-time performance

Receiver - Camera

- Static estimation of taillight ROI's

Receiver - Camera

- Crop ROI's and scale to 28×28 pixels

Receiver - Camera

- Classify states of taillights using neural network
- Same state as before $\quad=>$ Bit 0
- State changed $\quad=>$ Bit 1

OFF

Receiver - Taillight State Recognition

- Convolutional Neural Network
- Trained with >4000 images of taillights
- Various car models, environments, etc. to adapt to multiple scenarios.

Evaluation

- Transmitter
- 1:24 car models
- Microcontroller ESP8266
- LED taillights with UDPSOOK modulation

- Receiver
- Canon EOS 1100D DSLR camera
- Videos recorded with 30 FPS
- Exposure time set to $1 / 2000 \mathrm{~s}$

Evaluation - Single Example Video

Result: Bit error rate $=2.6 \%$
18 of 20 Messages (128 bit) received correctly

Evaluation - Single Example Video

Result: Bit error rate $=2.6 \%$
18 of 20 Messages (128 bit) received correctly

Evaluation - Single Example Video

Result: Bit error rate $=2.6 \%$
18 of 20 Messages (128 bit) received correctly

Evaluation - Single Example Video

Result: Bit error rate $=2.6 \%$
18 of 20 Messages (128 bit) received correctly

Evaluation - Single Example Video

Result: Bit error rate $=2.6 \%$
18 of 20 Messages (128 bit) received correctly

Evaluation - Single Example Video

Result: Bit error rate $=2.6 \%$
18 of 20 Messages (128 bit) received correctly

Evaluation - Bit error rate

Evaluation - Bit error rate

Evaluation - Bit error rate

Evaluation - Message error rate

Evaluation - Message error

Evaluation - Message error

OFF

Ambiguous

ON

Error bursts due to ambiguous taillight states cause 10% message error
rate

Evaluation - Message error rate

Evaluation - Message error rate

Evaluation - First reception time

Evaluation - First reception time

Conclusion

- Optical Out-of-Band Channel for Vehicle-to-Vehicle Communication
- Prototypes of car models in scale 1:24
- Camera with rolling shutter very short exposure time is needed.
- Results:
- BER of 3.64% on average (1.94\% standard deviation)
- Approx. 5 seconds to receive the first correct message
- Can be used for identity verification in platooning

Thanks for reading!

For questions, please contact Michael.Plattner@fh-hagenberg.at

UNIVERSITY
OFAPPLIED SCIENCES UPPER AUSTRIA
nemo
Research Group networks \& mobility

