Towards an Adaptive Lévy Walk Using Artificial Endocrine Systems

Hugo Sardinha*, Mauro Dragone and Patricia A. Vargas

Edinburgh Centre for Robotics - Heriot-Watt University

The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications ADAPTIVE 2020

*Presenting and corresponding author. email: hs20@hw.ac.uk

Hugo Sardinha received his MSc in Mechanical Engineering with a specialism in Control Systems, from Instituto Superior Técnico (IST), Lisbon University in 2012. After working for 3 years industry he rejoined academia and received a MSc in Robotics, Autonomous and Interactive Systems from Heriot-Watt University, in 2016. Currently he is a PhD candidate at the Edinburgh Centre for Robotics working on adaptive behaviours for aerial swarm robotics.

Motivation

- Foraging animals exhibit a behaviour that couples periods of localized search with ballistic relocation, i.e., Lévy Walk.
- Switching between these behaviours occurs due to changes in the environment.
- Can artificial endocrine systems be used as an adaptation mechanism to manage exploitation and exploration?

Lévy Walks

Random walks where step lengths are drawn from a power law

 $P(l_s) \sim l_s^{-\mu}, \quad 1 < \mu \le 3$

Biological Fluctuation (Yuragi)

Yuragi

Finite State Machine Model

$$\dot{\mathbf{x}}(t) = -\nabla U(\mathbf{x}(t))A(t) + \epsilon(t) \tag{1}$$

$$A(t) = R \cdot A(t-1) + f(t) \tag{2}$$

$$U(\mathbf{x}(t)) = (\mathbf{x}(t) - h)^2 \tag{3}$$

$$P(t) = e^{-\mathbf{x}(t)} \tag{4}$$

Endocrine Lévy Walk (ELW)

Hormone Variation Model

Settling point of $H(t) \longleftarrow H_s = c_0/(1-c_1)$

Recall that Lévy walks are random walks where step lengths are drawn from a power law

 $P(l_s) \sim l_s^{-\mu}, \quad 1 < \mu \le 3$

Adaptation of the μ parameter

$$\mu(t) = a_0 + a_1 \mu(t-1) + a_2 S_\mu(t)$$

$$\mu(t) \to \mu_s = a_0 / (1-a_1)$$

$$S_\mu(t) = \begin{cases} 1, & \Delta f(t) > 0 \\ 0, & \Delta f(t) \le 0 \end{cases}$$

Adaptation of the μ parameter

Include a *desire* (β) to interreput the current walk l_s

$$\mu(t) = a_0 + a_1 \mu(t-1) + a_2 S_{\mu}(t) \qquad \beta(t) = b_1 \beta(t-1) + b_2 S_{\beta}(t)$$

$$\mu(t) \to \mu_s = a_0 / (1-a_1) \qquad \qquad \beta_{\beta}(t) = \begin{cases} 0, & \Delta f(t) \ge 0 \\ \frac{\bar{\mu} - \mu(t)}{\bar{\mu} - \mu_s}, & \Delta f(t) < 0 \end{cases}$$

 $l_s = l_s \left(1 - \beta(t) \right)$

Optimising the ELW parameters via Genetic Algorithms

Optimising the ELW parameters via Genetic Algorithms

Optimising function (Search Efficiency)

GA parameters

- Tournament selection size: 10
- Arithmetic Crossover
- Uniform Random Mutation
- Population Size: 250
- Elitism rate: 5%
- Generations: 250

Test Environments

Yuragi

$$\dot{\mathbf{x}}(t) = -\nabla U(\mathbf{x}(t))A(t) + \epsilon(t)$$
$$A(t) = R \cdot A(t-1) + f(t)$$
$$U(\mathbf{x}(t)) = (\mathbf{x}(t) - h)^2$$
$$P(t) = e^{-\mathbf{x}(t)}$$

SENSITIVITY ANALYSIS ON EFFICIENCY WITH VARYING R

Model	R	Env I	Env II	Env III	Env IV	Env V
А	0.99	0.26 ± 0.11 (0.23 ± 0.11)	8.98±2.38	19.74±3.51	0.35±0.13	3.93±0.99
В	0.90	0.29 ± 0.10 (0.28 ± 0.11)	7.41±1.98	24.07±4.48	0.29±0.11	3.19±0.89
С	0.50	0.21 ± 0.09 (0.17 ± 0.06)	6.72 ± 1.61	20.70±4.69	0.24 ± 0.10	2.49±0.79

METRIC COMPARISON BETWEEN YURAGI AND ELW

Search behaviour	Efficiency (10^{-2})	Rewards Found (10^2)	Patches Found	
ELW-I	0.42±0.12	4.18±1.13	7.48±1.56	
Yuragi-B	$0.29 {\pm} 0.10$	2.61 ± 1.01	5.20 ± 1.53	
ELW-II	15.02 ± 2.14	126.50±11.32	9.58±0.58	
Yuragi-A	$8.98 {\pm} 2.38$	64.40±14.50	6.03 ± 1.30	
ELW-III	<mark>39.93±4.78</mark>	372.39±42.00	9.95±0.21	
Yuragi-B	24.07 ± 4.48	180.59 ± 29.03	6.07 ± 1.48	
ELW IV	<mark>0.39±0.01</mark>	3.83±0.97	6.89±0.97	
Yuragi-A	$0.35 {\pm} 0.13$	3.03 ± 1.12	4.45±1.37	
ELW V	6.22±0.85	56.71±7.13	<mark>9.73±0.48</mark>	
Yuragi-A	3.93±0.99	29.91±6.67	6.19 ± 1.41	

Search Behaviour	Metric	Environment I	Environment II	Environment III	Environment IV	Environment V
ELW-I	Efficiency (10 ⁻²)	0.42±0.12	10.09±1.74	20.64±2.63	0.37±0.15	4.40±0.81
	Rewards Found (10 ²)	4.18±1.13	72.70±9.97	124.68±12.17	3.59±1.30	34.00±5.42
	Patches Found	7.48±1.56	6.01±1.04	3.91±1.73	5.18±1.62	6.83±1.17
ELW-II	Efficiency (10 ⁻²)	0.40±0.10	15.02±2.14	38.81±3.74	0.38±0.11	6.17±0.92
	Rewards Found (10 ²)	3.92±0.99	126.50±11.32	266.51±18.25	3.73±1.05	55.92±7.74
	Patches Found	7.27±1.43	9.58±0.21	8.59±1.08	7.08±1.38	9.80±0.47
ELW-III	Efficiency (10 ⁻²)	0.24±0.07	9.98±1.73	39.93 ± 4.78	0.21±0.07	3.82±0.64
	Rewards Found (10 ²)	2.36±0.69	98.12±16.84	372.39 ± 42.00	2.18±0.78	37.82±6.35
	Patches Found	7.56±1.32	9.85±1.03	9.95 ± 0.21	7.10±1.57	9.93±0.32
ELW-IV	Efficiency (10^{-2})	0.41±0.10	12.92±2.02	38.22 ± 3.46	0.39 ± 0.01	5.20±0.79
	Rewards Found (10^2)	4.16±0.95	113.35±15.87	276.95 ± 18.67	3.83 ± 0.97	48.12±6.85
	Patches Found	7.32±1.29	9.87±0.37	9.49 ± 0.67	6.89 ± 1.29	9.85±0.36
ELW-V	Efficiency (10^{-2})	0.36±0.11	15.01±1.87	39.01±3.61	0.35±0.11	6.21±0.85
	Rewards Found (10^2)	3.60±1.12	127.10±13.51	274.55±17.48	3.56±1.11	56.71±7.13
	Patches Found	6.98±1.50	9.66±0.55	8.87±0.87	7.12±1.45	9.73±0.46
Yuragi-A	Efficiency (10 ⁻²)	0.26±0.11	8.98±2.38	19.74±3.51	0.35±0.13	3.93±0.99
	Rewards Found (10 ²)	2.01±1.01	64.40±14.51	121.61±16.64	3.03±1.12	29.91±6.67
	Patches Found	4.81±1.16	6.03±1.31	3.86±1.4	4.45±1.37	6.19±1.41
Yuragi-B	Efficiency (10 ⁻²)	0.29±0.10	7.41±1.98	24.07±4.48	0.29±0.11	3.19±0.89
	Rewards Found (10 ²)	2.61±1.01	61.80±15.68	180.59±29.03	2.58±0.95	27.17±7.29
	Patches Found	5.20±1.53	7.19±1.41	6.07±1.48	4.85±1.45	7.43±1.65

CROSS-TESTING OF ELW PARAMETERS ACROSS ENVIRONMENTS.

Conclusions

- We presented an artificial endocrine approach to modulate Lévy Walk behaviour in adaptive foraging tasks in patchy environments.
- ELW outperforms the Yuragi approach in all scenarios tested, even when not optimized specifically for that scenario.

Future Work

- Perform analysis on the trajectory and how well it fits to the predicted Lévy Walk model
- Deploy that strategy on an autonomous drone (Crazyflie)
- Compare efficiency from an energy perspective

THANK YOU!

IARIA

Towards an Adaptive Lévy Walk Using Artificial Endocrine Systems

Hugo Sardinha*, Mauro Dragone and Patricia A. Vargas

Edinburgh Centre for Robotics - Heriot-Watt University

The Twelfth International Conference on Adaptive and Self-Adaptive Systems and Applications ADAPTIVE 2020

*Presenting and corresponding author. email: hs20@hw.ac.uk

