Alarm Sound Classification System in Smartphones for the Deaf and Hard-of-Hearing Using Deep Neural Networks

<u>Yuhki Shirarishi¹</u>, Takuma Takeda¹, Akihisa Shitara²

¹Tsukuba University of Technology, Japan, ²University of Tsukuba, Japan

E-mail: <u>yuhkis@a.tsukuba-tech.ac.jp</u>

A Short Resume of the Presenter

Yuhki Shiraishi, Ph.D.

2018.4 – present: Associate Professor Faculty of Industrial Technology Tsukuba University of Technology, Japan

I teach for students who are deaf or hard of hearing (DHH).

Research Interests: Intelligent Signal Processing, Machine Learning, Information Support System, etc.

- 1. Background/Objective
- 2. Related Work
- 3. Development System
- 4. Calcification Algorithm
- 5. Experiments
- 6. Discussion
- 7. Conclusion
- 8. Acknowledgment

Background/Objective

Over 5% of the world's population (466 million people) has disabling hearing loss (40dB/30dB)¹

- 04
- Develop an alarm sound classification system in smartphone using deep neural network (DNN)
 As a result, DHH can go out safely using this system

1) https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss

Related Work

≻Ontenna

- an interface focusing on vibration
- let the user know sound by vibration in real-time
- no sound recognition system

➤Google Live Transcribe

- mainly for voice recognition
- recognize environmental sounds
- number of supported sound is limited

SeeSound

05

- send to the user via vibration and pop-up notifications
- works only in the home

https://ontenna.jp

Development System

The classification and transmission application run on a smartphone without connecting the internet.

>The basic flow of the proposed system

- 1. Collect environmental sounds with a smartphone
- 2. Notify smartphone when an alarm sound is identified

Deep Learning (DL) is used for classification
 Keras was used for implementing DL
 The system works in iPhone now

Development System

 $\overline{07}$

Recording function

-Can select 3NN, 4DNN and 5DNN

-Recognition Time

-Classifition ratio for each class ex)Ambulance Siren, Horn, Chari bell

Volume

-Logs of classifition result

Snapshot of develop smartphone application

Calcification Algorithm

➤The alarm classifying flow

- 1. Continuous collection of environmental sounds
- 2. If volume data exceeding the threshold is detected, record audio data for a certain period.
- 3. Specify the alarm class (horns, bicycle bells, ambulance sirens, etc.) of the recorded audio data.
- Because the nature of the alarm sound tends to be monotonous, we apply the short-time Fourier transform (STFT)

$$STFT(t,\omega) = \int_{-\infty}^{\infty} x(\tau)h(\tau-t)e^{-j\omega\tau}d\tau,$$

Calcification Algorithm

>Operation of the classification application

- 1. Use a smartphone microphone and collect sound every 1024 [frames] using 32-bit single-precision floating-point numbers (-1.0 to 1.0).
- 2. When the absolute value of the buffered single precision floating-point buffer exceeds the threshold value (0.3), identification processing starts.
- 3. Multiply the buffer by 2³¹ and change the buffer range to a 32-bit integer type, then execute STFT.
- 4. Input of logarithmic power spectrum to DNN.
- 5. Display the classification result on the screen.

Calcification Algorithm

- >In a real environment, the target sound would continue to sound.
- Therefore, the final classification result is determined by the following algorithm (called integrated judgment process)
- 1. Evaluate sounds continuous (1 to 10 times).
- 2. If there is more than one classification result from a specific sound other than noise,
 - A) Calculate the sum of outputs.
 - B) The largest of the noise exclusions is used as the final classification result.
- 3. If all classification results are noise,
 - A) Regard the final classification result as noise.

A. Basic performance of the classification system

- ≻Targets: 5 classes
 - horn, bicycle bell, ambulance siren, fire alarm, noises (footsteps, car driving, voices, door opening/closing, hitting desks, and rubbing plastic bags)

► Evaluation: 5-fold CV

25,000 pieces of training and evaluation data (5,000 pieces × 5 classes) with a maximum of 1,000 epochs (input layer: 513, hidden layer: 128, output layer: 5).

Number of layers	Classification ratio
3	0.9845
4	0.9867
5	0.9924

B. Performance in a noisy environment

- ≻Targets: 5 classes
- horn, bicycle bell, ambulance siren, fire alarm, noises
 >Evaluation:
 - Data: noisy environment of 50.5 to 100.3 [dB].
 - Method: simple judgement

	TP	FP	FN	TN	Prec.	Recall	F-value	Max vol[dB]
Horn	545	0	87	2232	1.00	0.86	0.92	98.1
Bicycle bell	502	0	113	2249	1.00	0.81	0.98	127.7
Ambulance	572	1	56	2336	0.99	0.91	0.95	90.0
Fire alarm	631	1	57	2176	0.99	0.91	0.95	93.2
Noise	298	262	2	2563	0.53	0.99	0.69	100.3

B. Performance in a noisy environment

- ≻Targets: 5 classes
- horn, bicycle bell, ambulance siren, fire alarm, noises
 >Evaluation:
 - Data: noisy environment of 50.5 to 100.3 [dB].
 - Method: integrated judgment process

	TP	FP	FN	TN	Prec.	Recall	F-value	Max vol[dB]
Horn	100	0	0	400	1.00	1.00	1.00	98.1
Bicycle bell	100	0	0	400	1.00	1.00	1.00	127.7
Ambulance	100	0	1	400	1.00	0.99	0.99	90.0
Fire alarm	100	0	1	400	1.00	0.99	0.99	93.2
Noise	100	2	0	398	0.99	1.00	0.99	100.3

C. Performance for unlearned horn sounds

≻Targets: 5 classes

14

horn, bicycle bell, ambulance siren, fire alarm, noises
 >Evaluation:

- Data: new type of horn sound (20 times * 7 types) different from the learning data in a noisy environment.
- Method: simple judgement

e

C. Performance for unlearned horn sounds

≻Targets: 5 classes

15

horn, bicycle bell, ambulance siren, fire alarm, noises
 >Evaluation:

- Data: new type of horn sound (20 times * 7 types) different from the learning data in a noisy environment.
- Method: integrated judgment process

	TP	FN	Classification rate
Horn 1	20	0	1.00
Horn 2	20	0	1.00
Horn 3	20	0	1.00
Horn 4	20	0	1.00
Horn 5	20	0	1.00
Horn 6	20	1	0.95
Horn 7	20	1	0.95

D. Adding new type of data from the web

➤Targets: 5 classes

16

horn, bicycle bell, ambulance siren, fire alarm, noises
 >Evaluation:

- Data: new 428 car horn sounds, 169 bicycle bell sounds, and 929 ambulance siren sounds
- Method: 5-fold CV (simple judgement)

Number of layers	classification Ratio
3	0.9367
4	0.9498
5	0.9714
6	0.9710

Discussion

≻Data collection

17

- lacks of labeled plenty clean data
- the crowdsourcing is one example of a solution

➢ Recognition start timing

the fast response time is vital because of the dangerous situation

Direction of the sound source

- DHH peoples are generally hard to notice the direction
- This problem would be resolved by using a microphone array and direction estimate algorithms

Conclusion

➤We have proposed and developed an alarm sound classification system using DNN by smartphones.

Evaluation experiments were performed to verify the effectiveness of the system.

>We also discuss the limitation of the developed system and the expectation of the improved system by overcoming these limitations.

Acknowledgement

19

- ➤The authors would like to thank Nobuyoshi Hata and Kazuki Yano, who have partially worked on the project.
- ➤This work was partially supported by JSPS KAKENHI Grant Numbers #16K16460, #19K11411, and Promotional Projects for Advanced Education and Research in NTUT.

➢One of the authors, Takuma Takeda, is now working at NEC Fielding, Ltd., Japan.