Potentials and Challenges of Using Mixed Reality in Mining Education

Lea Marleen Daling, Christopher Eck, Anas Abdelrazeq, and Frank Hees
Chair of Information Management in Mechanical Engineering (IMA)
RWTH Aachen University
About the author

Since November 2017, Lea Daling works as a research associate at the Chair of Information Management in Mechanical Engineering (RWTH Aachen University).

Ms Daling is part of the research group "Digital Transformation in Working Environments". With a professional background as a psychologist, Ms Daling researches and works at the interface between human and technology.

A special focus of her research is on digital technologies such as augmented and virtual reality - as well as their implementation and evaluation in educational and professional contexts.
The MiReBooks Project

This work is part of the project “Mixed Reality Books (MiReBooks)” and was funded by the EIT RAW Materials.

• In MiReBooks, a series of mixed reality based interactive mining handbooks will be produced as a new digital standard for higher mining education throughout Europe.
• MiReBooks allows teachers to work directly with AR or 360° images during their lectures as well as making self-study more interactive for students.
• With MiReBooks, students can learn in a more effective way by using visual and interactive materials.

Find out more: https://mirebooks.com
Agenda

Introduction

Mixed Reality and its Application in Mining Engineering Education

Interview-Study

Method and Design of a Europe-wide Interview Study

Results & Critical Reflection

Discussion of Challenges and Opportunities of MR in Mining Engineering Education
Introduction – Mixed Reality and its Application in Mining Engineering Education

Challenges in Mining

- Mining is becoming less attractive for students → declining student numbers
- Mining engineering graduates often have little understanding of how to transfer their theoretical knowledge into practice

Mixed Reality in Education

- MR tools are increasingly finding their way into education
- MR offers new “opportunities for enhancing both motivation and learning across a range of subject areas, student developmental levels, and educational settings” (Dede et al., 2017)
- The replication of real processes in simulated environments can support the training of relevant behavior for performance in work or personal life

The MiReBooks Project

- MiReBooks produces a series of Virtual Reality (VR) and Augmented Reality (AR) based interactive mining handbooks as a new digital standard for higher mining education across Europe
- The project aims to change the way students are taught by empowering teachers to engage their students more effectively and provide them with a wider repertoire of content and better understanding
Introduction – Mixed Reality and its Application in Mining Engineering Education

Aim of this research:

➢ To give an overview of the potentials and threats of using Mixed Reality (MR) based technologies in mining education.

Method:

➢ An interview study with 39 participants (teachers and students) was conducted across Europe to assess
 ▪ the need,
 ▪ possible application scenarios, as well as
 ▪ opportunities and risks of MR in teaching.
Introduction

Mixed Reality and its Application in Mining Engineering Education

Interview-Study

Method and Design of a Europe-wide Interview Study

Results & Critical Reflection

Discussion of Challenges and Opportunities of MR in Mining Engineering Education
Interview Basis: MR Test Lectures in the MiReBooks project

MR Technologies used in the MiReBooks Test Lectures

3D Models (AR)

3D environment (VR)

360° Video
Method: Study Design

Participants

Experienced Teachers (3)

• Held at least one of four different MiReBooks test lectures (using MR technologies)

Experienced Teachers (3)

• Have no prior experience using MR in teaching
Method: Study Design

Participants

Experienced Students (21)
- Took part in at least one of four different MiReBooks test lectures (using MR technologies)

Inexperienced Students (12)
- Have no prior experience using MR in their studies

Participants were from Germany, Austria, Estonia, Sweden

All students were from different semesters, but they had to be enrolled in a mining-related subject
Method: Study Design

Interview Focus

- Experiences with MR
- Reflection of the test lecture
- Necessary preparation and optimal teaching conditions using MR

Interview Focus

- current use of media
- interest in using MR
- Requirements enabling teachers to give their own lectures with MR

Interview Focus:

- Experiences with MR
- MR in comparison to classical lectures
- Advantages, Disadvantages and possible difficulties using MR

Interview Focus:

- Feedback about their experiences with current teaching methods
- General expectations with regard to benefits or threats using MR
Agenda

Introduction
Mixed Reality and its Application in Mining Engineering Education

Interview-Study
Method and Design of a Europe-wide Interview Study

Results & Critical Reflection
Discussion of Challenges and Opportunities of MR in Mining Engineering Education
Method: Study Design

Qualitative Content Analysis

<table>
<thead>
<tr>
<th>Table I: Overview of Derived Categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Categories</td>
</tr>
<tr>
<td>Currently used media</td>
</tr>
<tr>
<td>Changes in the learning experience</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Application scenarios</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lessons learned from test lectures</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

- **categories from interview guidelines**
- **data**
- **sub-categories**
- **substance of the analyzed content**
Results: Currently Used Media

- Pictures & Graphs (15)
- Texts & Manuals (12)
- Videos & Films (11)
- Excursions & visits to mines (11)
- 3D Animations (6)

(N=15)
Results: Changes in the learning experience due to MR

<table>
<thead>
<tr>
<th>General benefits of MR</th>
<th>Individual learning needs</th>
<th>Guidance through the lecture</th>
</tr>
</thead>
</table>
| „more practical understanding“ | • Time is needed to get used to technology
 „feeling of reality“
 „better imagination of machines and processes“ | • restricted eye-contact during VR-Use |
| MR leads to a comprehensive learning experience | • MR opens up different “paths” of teaching | • MR can be „overwhelming“ for students
Main Benefit: MR offers a more individual learning environment |
| | Main Challenge: everyone has their own pace and type of learning | • Visual cue points and clear instructions are helpful |
| | | Main Benefit: Teacher are able to track student’s progress |
| | | Main Challenge: Difficult to lead everyone to the same learning goal |
Results: Application scenarios of MR

<table>
<thead>
<tr>
<th>Target Group</th>
<th>Use Cases</th>
<th>Alternative to field trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>• inexperienced students are most likely to benefit from MR-based experiences (get an overview)</td>
<td>• Visualization of scenarios (underground mining, open pit mining or blasting)</td>
<td>• Better overview (structures, sizes, machines)</td>
</tr>
<tr>
<td>• other students could benefit from more advanced and interactive settings</td>
<td>• detailed practical processes, (e.g. functioning or operation of machines)</td>
<td>• Different perspectives</td>
</tr>
<tr>
<td></td>
<td>• “virtual add-on” to excursions</td>
<td>• Game-based immersive learning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Excursion - expensive, far away or dangerous</td>
</tr>
</tbody>
</table>

Classical methods stay relevant, e.g. for scientific basics and theoretical subjects
Results: Lessons Learned from MR Test Lectures (I)

Need for Preparation

• Familiarizing with technology and teaching materials

• personal workshop trainings / online offers

→ Foresee problems

Need for Technical Assistance

• Setting up the systems

• charging & maintenance

• solving technical issues in class

→ teacher can focus completely on teaching of the content.
Results: Lessons Learned from MR Test Lectures (II)

Recommendation on Usage Time

- Duration
 - max. 30min in 90min class
 - 4-6 360° videos, each 2-4min

- Frequency

- Amount of devices

→ Beneficial regarding lecture and content

Open Questions

- Financial aspects

- Availability of MR content

Open Questions

- Financial aspects

- Availability of MR content
Conclusion

- 39 persons with and without experience with MR were interviewed across Europe
- Especially teachers see the potential of MR in offering experiences in otherwise hardly accessible settings
- Students had the impression to get a more practical and deeper understanding of the content through the use of MR technologies
- Students as well as teachers see the possibility of enhancing motivation through the use of MR
- Classical methods will nevertheless stay relevant for mining engineering education

Outlook: Future Steps & Research

- Transparency about the possibilities of MR technologies should be established
- Low-threshold tools and platforms in order to use MR for teaching purposes should be developed
- There should be more research on collaborative solutions and scenarios in MR to enforce communication between students.
Many Thanks for Your Attention!
Chair of Information Management in Mechanical Engineering
RWTH Aachen University

Lea Daling, M.Sc.
Research Associate
lea.daling@ima.rwth-aachen.de