

Business Case Evaluation Methodology (BCEM) for Factories Digitalization

> Roberto Rocca – Politecnico di Milano (roberto.rocca@polimi.it) UBICOMM 2019 – IFDA, September 26, 2019 - Porto, Portugal

> Introduction

- Holistic migration methodology advantages
- > FAR-EDGE Business Case Evaluation Methodology (BCEM)
- FAR-EDGE Project use case 1: WHR
- ➢ FAR-EDGE Project use case 2: VTC

> Conclusion

The FAR-EDGE Project is a Research and Innovation Action funded under the European Commission's H2020-EU.2.1.1 programme, FoF-11-2016 topic (grant agreement n.723094)

To develop a methodology able to identify, guide and evaluate migration paths for a specific business case towards holistic digital transformation

BCEM for Factories Digitalization

① Competitive differential in the company value chain

- ✓ SWOT analysis^[1]
- ✓ KPIs definition
- ✓ Porter's value chain^[2]

- The first step of the methodology aims to open the way toward digital transformation. This section contains only dynamic tools which should be updated periodically, as the environment continuously change also the company should continuously adapt and take advantage of it.
- A strict subdivision of the primary activity must be overcome. Standardization of the data management architecture should be able to break the barrier of the primary activity, making data available through all the factory activities.

E. Gürel. Swot analysis: A theoretical review. Journal of International Social Research, 2017.
 M. Porter Competitive Advantages, Creating and sustaining superior performances, 1985.

2 Assessment

- ✓ Questionnaire: Technical, Operational, Human dimension
- ✓ Collaboration with use case experts
- ✓ Migration matrix preparation
- ✓ AS-IS scenario definition

- The main goal of this assessment is to clearly define the AS-IS situation in the technical, operational and human dimension.
- The three-dimensional structure has been adopted to offer a holistic migration, not only technical-centred. No dimension is independent from the others, thus it would be a substantial mistake to consider the enhancement in a certain issue, without considering the effect on the others.
- To assess the various issues related to the three dimensions a maturity model has been exploited.

[3] G. Schuh, R. Anderl, J. Gausemeier, M. ten Hompel, and W. Wahlster. Industrie 4.0 Maturity Index - Managing the Digital Transformation of Companies. acatech STUDY, 2017.

- Collaboration with OEMs and solution providers
- ✓ TO-BE scenario definition
- ✓ Migration matrix completion

- There could be more than one way to reach the desired result and the TO-BE scenario could not be unique.
- The possible scenarios depend on specific information which should be researched in collaboration with solution providers.
- A collaboration with OEMs and solution providers is required at this point in order to assess the feasibility of the scenarios and provide solutions able to improve the KPIs defined in step 1.

BCEM – step 4 & step 5

④ Gap Analysis

- ✓ Required components
- ✓ Possible integrations
- ✓ Steps for application

(5) Value Added identification

- ✓ KPI improvements estimation
- Unmeasurable advantages evaluation

- Also the gap analysis between the AS-IS and the TO-BE scenarios represents an outcome of the collaboration with the solution providers.
- Required components, possible integrations and steps for application are the three main steps to carry on.
- The improvement KPIs refer to the measurable performance of the systems, not to a business economic goal

- A cost-benefit analysis to justify the investment in digital transformation is the last step of the methodology.
- This analysis is performed in a differential way comparing the TO-BE situation with respect to the AS-IS situation.
- If the analysis is performed in a correct and meaningful way, subtracting benefits and costs from one another, it becomes clear which situation is preferable from a profit perspective.

[4] M.S. Grobelny. Evaluating the Total Cost of Ownership for an On-Premise Application System, 2017

[5] G. Azzone, U. Bertelè. L'impresa - sistemi di governo e valutazione, 2017

AS-IS scenario

SWOT Analysis

Internal factors	Strengths	 ISA-95 automation pyramid integration (ERP, MES, SCADA) Solid competences developed in many manufacturing factories worldwide Internal digital knowledge in others Industry 4.0 research projects 		
Interna	Weaknesses	 Sorting system unreliability (production stoppages, hardware problems) Sorting system rigidity (long reconfiguration time) 		
l factors	Opportunities	 FAR-EDGE improves system flexibility, adaptability (Piug'n'Produce) and reliability Lead the digital transformation disruptive trend Creation of a standardized architecture shared with the acquired Indesit factories 		
External	Threats	 Architecture changing projects require long time to observe useful results Digital projects applied to big companies are very expensive Lack of widespread competences about Edge Computing and Distributed Ledger 		

Main impact on:

UC#2 - Operator Support for Smart Sequencing

Main impact on:

					FAR-EDGE	
MP 1 Automation	Level 1	Level 2	Level 3	Level 4	Level 5	
	Equipment/Machinery connect/vity and communication protocols					
	Not available	Basic connectivity (RS232-RS485)	Local network through LAN/WAN	Networked with vendor specific API, integrable with other systems	Networked with standardized mechanisms and standard API	
\sim	Physical producti	on process control				
	Not available	Locally, per station / equipment	Centrally available through SCADA	Available and analyzed through MES at Factory level	Available and analyzed through the Cloud	
	Cyber-Physical S	ystem characteristic	is of the product			
	No identification or serialization available	Simple identification (e.g. Barcodes or RFID tags)	Sensors and actuators attached to the product	Sensors readings are processed by the product	The product exhibits CPS functionality	
	Reconfiguration of shop-floor equipment					
80	Only manual reconfiguration	Supported by HMI at machine level	Configuration managed through central supervisor system	Configuration centrally managed by MES or MOM	Centrally managed according to ERP through the Cloud	
	Production IT department					
Ð	Not available	External service provider for traditional IT systems	Internal for traditional IT systems	External service provider for all digital systems from field to cloud	Internal for all digital systems from field to cloud	
X	Production emplo	yees' skills				
(مت)	No experience with digital technologies	Little experience with digital technologies	Digital skills in some technology focused areas	Digital and data analysis skills in most areas of the business	Cutting edge digital and analytical skills are prevalent all across the factory	

MP 3 Simulation	Level 1	Level 2	Level 3	Level 4	Level 5	
	Devices connectivity capabilities					
A	Not available	Basic connectivity (RS232-RS485)	Local network through LAN/WAN	Networked with vendor specific API, Integrable with other systems	Networked with standardized mechanisms and standard API	
ééé	Simulation input (data collection				
	Hypothesized according to professional role experience	Defined based on the system design parameters	Deducted by manual measurements	Deducted by statistical analysis based on historical data	Collected in real time or near real time from the field through sensors	
	Production Optimization					
ð.,	Not available	Rare offline optimization	Offline optimization based on manual data extraction	Manual optimization based on simulation data	Automatic optimization based on simulation services	
1.5	Availability of production process models					
•	Not available	Models defined (Excel based) with limited use	Models defined with limited specific functions	Models defined and integrated with business functions	Models defined and integrated with several different functions	
	Impact of digital technologies on Product Designers and Production Engineers					
æ	Still unclear	Identified in general terms	Analyzed	Defined	Implemented in continuous Improvement	

H2020 Research and Innovation Action - This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N. 723094

Even if the smart technologies implementation is becoming a paramount trend in the **manufacturing world**, the path toward I4.0 is often encountered several obstacles. **Possible barriers** regarding investments in digital transformation are represented by the difficulty of assessing and easily predicting the **tangible benefits** that this cultural and technological evolution can bring. For this reason they must be guided by **clear managerial objectives** and **quantifiable business benefits**.

The **impacts evaluation** of migration towards digital transformation can be a **useful tool** to identify and analyze the steps to be taken, trying to predict **risks** and **threats** and leveraging **strengths** and **opportunities**.

A **holistic** view must consider migration from the **technical**, **operational** and **human** point of view, trying to evaluate the potential tangible and intangible benefits.

Thanks for the attention!

Business Case Evaluation Methodology (BCEM) for Factories Digitalization

Roberto Rocca – Politecnico di Milano (roberto.rocca@polimi.it)

Insight

H2020 Research and Innovation Action - This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N. 723094

BCEM – use case 1: matrix

Porter's Value chain

- B2B process which adds value on top of transforming raw materials, delivering the product and providing services to the final user (e.g. product warranty)
- The particular use case impacts on the primary activity of
 - Operations: by making the final sorting system more flexible and increasing the system reliability.
 - Outbound logistics: by simplifying the collection of the pallet from the final bays with an improved sorting policy
 - Services: by making available the information about each bay content
- In general Firm infrastructure leads the digital transformation, Human resources guarantee proper training, Procurement assures services alignment with the novel architecture, and R&D develops the technologies.
- Data can move unbounded thanks to the NGAC.

MP 5	Level 1	Level 2	Level 3	Level 4	Level 5			
Automation								
Simulation								
	Sorter-bay conne	ctivity and communi	cation protocols					
	Not available	Basic	Local network	Networked with	Networked with			
	THEN PERSONNEL	connectivity	through	vendor specific	standardized			
		(RS232-RS485)	LAN/WAN	API, integrable	mechanisms and			
		(R5232-R5465)	LANYWAN	with other systems	standard API			
				with other systems	standard AFT			
	Information Access Points							
	Not available	Sensors'	Centralized unit	Cloud level	Cloud and Edge			
	NOUSVAIIADIG	hardware	Contrait200 Unit	Gioud level	levels			
		narowarc			ieveis			
\sim								
ří ni ří		ess control mechania						
	Not available	Locally, per	Centrally	Available and	Available and set up			
		station /	available through	analyzed through	through the Cloud			
		equipment /	SCADA	MES at Factory				
		machinery		level				
		_						
	3D layouts, visua	lization and simulation	on tools					
	CAD systems	CAD systems	CAD systems	CAD systems	Fully integrated			
	not related to	manually feed	interfaced with	interfaces with	CAD systems with			
	production data	with production	other design	intelligent systems	intelligent tools for			
		data	systems	for fast	interactive design			
				development	process			
	Sorting-policy opt	imization						
	Not available	Operator or	Historical	Simulation	Autonomous			
		Scheduling	production data	supported	simulation-based			
		engineer	supported	decision	decision, Machine			
		experience	decision		to Machine			
C.		decision			collaboration			
	System recontiguration							
0	Manual	Reconfiguration	Reconfiguration	IT central	Reconfiguration			
	operator	of the single	from a central	reconfiguration	according to			
		station /			business			
	reconfiguration		supervisor system					
		equipment (PLC)	(SCADA)	MOM)	requirements			
	Maintonance day	artmont ekille						
	Maintenance dep		Tashaalaas	Most areas of the	All across the			
\rightarrow	No experience	Little experience	Technology focused areas					
0	with digital	with digital		business have well				
ð	technologies	technologies	have employees	developed digital	edge digital and			
			with digital skills	and data analysis	analytical skills are			
				skills	prevalent			

SWOT Analysis

factors	Strengths	 ISA-95 automation pyramid integration (ERP, MES, SCADA) Solid competences developed in many manufacturing factories worldwide Internal digital knowledge in others Industry 4.0 research projects 			
Internal	Weaknesses	Ordinary non-optimized assembly line managing policies (no simulation support)Manual tool configuration is time consuming and leads to assembly errors			
l factors	Opportunities	 Simulation for system optimization (e.g., improved truck sequences) Analytics for data awareness (e.g., more precise assembly activities time) Automation for Plug'n'Produce purposes (e.g., improved reconfigurability) 			
External	${ m Threats}$	Architecture changing projects require long time to observe useful resultsDigital projects applied to big companies are very expensiveLack of widespread competences about Edge Computing and Distributed Ledger			

- B2B process which adds value on top of transforming raw materials, delivering the product and providing services to the final user (e.g. product warranty)
- The particular use cases impact on the primary activity of
 - Operations: by assuring a correct tool parameters settings (UC#1); by shortening the tools set up time (UC#1); by optimizing the truck choice from the buffer (UC#2).
 - Outbound logistics: by reducing and simplifying the management of tardy deliveries (UC#2).
- In general Firm infrastructure leads the digital transformation, Human resources guarantee proper training, Procurement assures services alignment with the novel architecture, and R&D develops the technologies.

Ŷ

BCEM – TCO model & Economic Analysis

	\mathbf{Design}	Built	Deploy	Maintain	Upgrade
t Driver	 Time and effort to identify business requierements Time and effort to design the infrastructure architecture Consultant fees for infrastructure design and planning 	 Time and effort to assess and select hardware, software, and datacenter Time and effort to review license agreement, service level agreements (SLAs), and security requirements Software and hardware upfront costs 	 Time and effort to setup, install, and test system Training for users and administrators Data migration related costs 	 Time and effort to administer, manage, and support systems Hurdware maintenance and software assurance Datacenter - power, cooling, space and internet bandwidth 	 Time and effort to implement upgrades Infrastructure hardware and software upgrade costs Application software upgrade costs

UPFRONT COSTS

Assumptions for the economic analysis:

- 1. The appraisal is a differential analysis between the AS-IS and one TO-BE scenario at a time.
- 2. The evaluation period is 1 year, the number of periods is 10.
- 3. The investment is concentrated in the initial instant, at the beginning of the first period.
- 4. The investment has zero residual value at the end of period 10.
- 5. The discount rate is fixed and it is equal to 10%.
- 6. Unlimited budget: it is preferable to select the scenario which maximizes the NPV.
- 7. No depreciation or financing is considered: the project is completely financed by the company's own funds.
- 8. Scenarios are not necessarily mutually exclusive: the implementation of one scenario does not imply the certain exclusion of another in the future.
- 9. The project implementation is not compulsory: there is the possibility to maintain the AS-IS scenario
- 10. Sunk costs and sunk benefits are not considered.

RECURRING COSTS