University and Government Partnership in Morehead Ground System Development for Space Mission Operations

Timothy Pham^[1], Benjamin Malphrus^[2]

^[1]Jet Propulsion Laboratory, California Institute of Technology ^[2]Morehead State University

Jet Propulsion Laboratory California Institute of Technology

Copyright 2019 California Institute of Technology and Morehead State University. Government sponsorship acknowledged

1

Outline

- How partnership is formed
- Background information
- System architecture
- Operational concept
- System performance
- System validation incrementally
- What makes it works

Partnership

- Connection between MSU and DSN
 - via Lunar IceCube/Exploration Mission 1

NASA Programs

Jet Propulsion Laboratory California Institute of Technology

Human Exploration & Operations Mission Directorate

Jet Propulsion Laboratory California Institute of Technology

EM-1

EXPLORATION MISSION-1

The first uncrewed, integrated flight test of NASA's Orion spacecraft and Space Launch System rocket, launching from a modernized Kennedy spaceport

Total distance traveled: 1.3 million miles – Mission duration: 25.5 days – Re-entry speed: 24,500 mph (Mach 32) – 13 CubeSats deployed

https://en.wikipedia.org/wiki/Exploration_Mission-1#/media/File:EM1-Mission-Map_Update.jpg

Jet Propulsion Laboratory California Institute of Technology

Copyright 2019 California Institute of Technology and Morehead State University. Government sponsorship acknowledged

NASA

Lunar IceCube

https://www.nasa.gov/feature/goddard/lunar-icecube-to-take-on-big-mission-from-small-package

Jet Propulsion Laboratory California Institute of Technology

Morehead State University and Goddard are partnering to create the Lunar IceCube mission shown in this artist's rendition. Credits: Morehead State University

The Busek Company is developing Lunar IceCube's low-thrust electric propulsion system, the RF Ion BIT-3 thruster. *Credits: Busek Company*

Background on MSU Capabilities

The Morehead State University Ground Station

- Relatively quiet RFI environment in eastern Kentucky
- 21-m ground station operational since 2006
 - Few in the US large enough for deep space tracking
 - Built under university funding
- Experienced RF and telecom engineers and scientists
- Experienced staff/students in mission operations
 - LRO, ISEE-3, Planet Lab, KySpace, ASTERIA

Jet Propulsion Laboratory

California Institute of Technology

Copyright 2019 California Institute of Technology and Morehead State University. Government sponsorship acknowledged

21 Meter System at Morehead

Specifications by MSU faculty with NASA assistance
Dual Purpose Instrument

Ground Station for Smallsats

• Radio Telescope for Astronomy Research

Funded \$3.4 M -a variety of sources- Morehead State, Federal and State Funds, KSTC, NASA
Built and Installed by VertexRSI (General Dynamics)
Feeds Designed and built by VertexRSI, APL, and MSU

Space Projects Create Opportunities for Students

- Undergraduate Research Experiences
- Instrumentation Experience
- Engineering Design
- Observational Astrophysics Research
- Ground Ops (TT&C)
- Project Management Experience
- Systems-level Engineering Experience

Exploring spacecraft throughout Solar System

Deep Space Communications Challenges

- Deep space Interplanetary communications
 - Extended to the edge of Solar System
 - Voyager spacecraft ~130 AU
- Difference between deep space and LEO communications
 - LEO: ~1000 km
 - Deep space: ~400,000 km (0.003 AU) 130 AU

Distance	Power reduction
Moon	1.5E+05
Larange points	2.3E+06
Mars	2.3E+10
Jupiter	6.1E+11
Saturn	2.0E+12
Pluto	2.0E+13
Heliosphere	3.3E+14

NASA Deep Space Network

- Provide global coverage at 3 sites around the globe
 - One 70m and three-four 34m antennas at each site
- Support missions from HEO to edge of solar system
- Optimize high performance for deep space communications
 - Compared to typical 10m commercial tracking station
 - Lower noise (3x-6x)
 - Higher gain (10x 50x)

NASA Deep Space Network

https://eyes.nasa.gov/dsn/dsn.html

NASA Deep Space Network Architecture

Transition from LEO to Lunar Orbit

- Distance: 1000km >> 400,000 km
 - Signal power reduction proportional to distance squared
- Require better link performance
 - Higher frequency: UHF (400 MHz) >> X-band (8 GHz)
 - Lower system noise temperature: 300K >> 100K
 - Higher perform FEC: RS >> Turbo

Implementation Objectives

- Upgrade MSU 21-m antenna to support Lunar IceCube and other EM-1 Cubesats
 - X-band operations
 - Deep space and near Earth
 - Full TTC functions
 - 3 kW power amplifier
 - Deep space specialization
 - Highly efficient FEC (e.g., turbo code, LDPC)
 - Pseudo-noise/sequential ranging
 - Interoperability with DSN and CCSDS compliant

Jet Propulsion Laboratory California Institute of Technology

Copyright 2019 California Institute of Technology and Morehead State University. Government sponsorship acknowledged

link Ranging Modulation

-2 -1 0 1 2 Frequency Offset from Carrier, Normalized by Range-Clock Frequency

Rel

17

System Attributes

- Minimize implementation cost
 - Leverage on DSN-developed equipment
 - Specialized deep space signal processing for telemetry decoding and ranging
 - Adapt the already-built equipment to only necessary functions
 - Implement the rest with COTS equipment
 - New and surplus components
- Adopt common user interfaces
 - Data delivery at JPL, as with other DSN antennas
- Create opportunity for student-developed projects
 - Station monitor & control
 - System Integration and testing
 - Equipment operations

DSN Equipment

Hydrogen MASER

Jet Propulsion Laboratory California Institute of Technology

System Architecture

Jet Propulsion Laboratory California Institute of Technology

Operation Concept

Few weeks before track	 Antenna scheduling via DSN Transition to operational multi-mission support Schedule conflict resolution 	
Few days before track	 Prediction data generation by DSN Data retrieved by MSU Data delivery via DSN interface points 	
Real-time during track	 Command, telemetry, radiometric data WAN Connection to JPL via NASA mission backbone IT security clearance by NASA 	
Real-time & • Post track	 System monitor control and diagnostics Locally controlled and archived Voice network communications with MOS team 	
lat Branulaian Laboratory		

System Performance

Performance Measure	Pre-Upgrade	Post-Upgrade
X-Band Frequency Range	7.0 – 7.8 GHz	7.0 – 8.5 GHz
LNA Temperature	70 K	< 20 K
System Noise Temperature	215 K	<100 K
Antenna Gain	62 dBi (@7.7 GHz)	62.7 dBi (@8.4 GHz)
System Noise Spectral Density	-175 dBm/Hz	<-178 dBm/Hz
G/T at 5° Elevation	37.5 dB/K	40.4 dB/K
Time Standard	GPS (40 ns)	Hydrogen maser (1 ns/day)
EIRP	N/A	93.7 dBW
HPBW	0.124 deg	0.115 deg
CCSDS Compliance	N/A	Yes
Forward Error Coding	Reed Solomon/Convolutional	Reed Solomon/Convolutional, Turbo, Low Density Parity Check
Radiometric	Angle, Doppler	Angle, Doppler, Ranging

System Validation, using Internal Test Signal

First Deployment (9/2017)

- Installed DSN equipment
- Conducted loopback tests between uplink and downlink equipment
 - Validated key TTC processing

System Validation, using Internal Test Signal with E2E flow

First Deployment (9/2017)

- Installed DSN equipment
- Conducted loopback tests between uplink and downlink equipment
 - Validated key TTC processing

System Validation, with spacecraft

Second Deployment (5/2018)

- Additionally installed antenna feed, LNA, RF/IF downconversion
- Conducted testing with spacecraft downlink
 - MarCO, Osiris Rex, Maven, Hayabusa2

Shadow Tracking Spacecraft

Currently in progress

- Expected 10-dB G/T difference between DSN and MSU antennas
 - Antenna Gain: MSU (21m)= 0.4* DSN (34m)
 - System Noise Temperature: MSU(100K) = 4*DSN(25K)
- Shadow DSN tracking of missions with sufficient SNR (>10 dB link margin)
 - Hayabusa2, Osiris and Maven

Results with Hayabusa2

- Expected signal strong enough for carrier, subcarrier and symbol locks
 - Not strong enough for telemetry decoded
- Observed 11.3 dB difference between MSU and DSN antennas, based on carrier SNR and symbol SNR
 - Within bounds of 10 dB expectation

Results with Osiris

- Expected signal strong enough for carrier, subcarrier and symbol locks
 - Insufficient bit SNR (Eb/No) for telemetry frame decoding
- Observed
 - Achieved carrier lock, but not subcarrier nor symbol locks
 - 10.3 dB difference between MSU and DSN antennas
 - Consistent with expectation

Jet Propulsion Laboratory California Institute of Technology

Results with MAVEN

- Expected signal strong enough for carrier, subcarrier and symbol locks and telemetry decoded
- Observed
 - Carrier lock 11.0 dB difference between MSU and DSN antennas
 - Subcarrier lock Not achieved
 - Symbol lock 17 dB difference, due to lack of subcarrier lock
 - Telemetry decode Not achieved, due to lack of subcarrier lock

Jet Propulsion Laboratory California Institute of Technology

Recent results with Osiris & Stereo

- Success!!!
 - Fully decoded telemetry data

Jet Propulsion Laboratory California Institute of Technology

What makes it works

- AES programmatic support
- Staff & students expertise
 - Previous Cubesat operations
 - Core engineering staff with RF experiences
 - Small focused team
- Ownership of system
 - Shared responsibilities
- Available funding support

