Customer Segmentation Using Unsupervised Natural Language Processing NexTech 2019

Tim vor der Brück

September 2019

Lucerne University of Applied Sciences and Arts

HOCHSCHULE

Traditional Customer Segmentation (cf. Lynn 2011)

- Based on clustering demgraphic, geographic and psychological variables like sex, age, city or profession
- Rather unreliable in detecting people's interest
- Thus, we propose an alternative method based on natural language processing

Task: assign people to marketing target groups

- Our business partner operates a Website where he organizes several contests
- in these contests, people can win certain prices like bicycles, MacBooks, pairs of sneakers
- For that, participants have to come up with a short descriptions (text snippets) what to do with their prize, or what they want to do in their dream holiday
- Based on these text snippets, the participants were distributed into one of 6 target groups

Contest text snippets provided by the participants

- Jordan: Ride through the desert and marveling Petra during sunrise before the arrival of tourist buses
- Oook Island: Snorkeling with whale sharks and relaxing
- USA: Experience an awesome week at the Burning Man Festival

Target Groups (Youth Milieus)

Keywords

- Each youth milieu is described by a set of keywords
- Keywords are currently defined manually
- Examples:
 - Young Performer: rich, elite, luxury, luxurious
 - Action Sportsmen: sports, fitness, music

Ľ			5	ľ	°	
E						
					Ľ	

Word Vectors / Embeddings

- Idea: Each word w is associated a fixed-length numerical vector emb(w) in a semantic space
- Semantic similar words have similar vectors
- These vectors are determined either by a neural network or co-occurrence statistics
- You can use these vectors for calculation: emb(king)-emb(man)+emb(woman)=emb(queen)
- Words can be semantically compared by taking the cosine of the angle between these vectors (cosine measure)

Standard approach - Centroid of Embeddings (CE)

Standard approach - Centroid of Embeddings (CE)

Standard approach - Centroid of Embeddings (CE)

Standard approach (CE)

Task: Estimate semantic similarity between text t text u

- Compute word embeddings for all words occurring in text t and u
- Compute the two centroids C_t and C_u of the word embeddings
- Similarity is given by: cos(∠(Ct, Cu))

Drawback of standard approach

Let

- x₁,..., x_m embedding vectors of document t,
- y₁,..., y_n embedding vectors of document u
- C_t the centroid for document t
- C_u the centroid for document u

$$cos(\angle(\mathbf{C_t}, \mathbf{C_u})) = \frac{\sum_{i=1}^{m} \sum_{j=1}^{n} \langle x_i, y_j \rangle}{nm \|\mathbf{C_t}\| \cdot \|\mathbf{C_u}\|}$$

Small cosine similarity values can have in aggregate a considerable impact on the result \rightarrow Method is vulnerable to noise

Noise reduction techniques

Noise reduction techniques are important, since we are dealing with short text snippets.

- Stop word list
- Weighted embeddings (e.g., tf-idf)
- Outlier robust centroids
- Use of Similarity Matrix

Stop Word List

- Manually specified list of words that are automatically removed from the text (here snippet)
- Usually contains function and very common words
- Pro: very fast
- Cons: crisp decision, no weighting function

Conclusion: Stop word filtering should be done but only with very common words

Weighted Embeddings

- (cf. Brokos 16)
 - word vectors are weighted according to the words relevance
 - very common words are weighted less
 - rather rare words occuring often in the given text are weighted strong
 - most popular weighting scheme: tf-idf
 - tf-idf(w,d): $tf(w, d) \cdot log(N/df(w))$
 - tf(w, d) (term frequency): how often does word w occur in document d
 - df(w) (document frequency): how often occurs word w in entire corpus
 - N: corpus size

Outlier Robust Centroid

(cf. I. Ilea et al. 2016)

- Instead of comparing centroids of word embeddings, one can compare outlier robust centroids
- Ordinary centroid: Linear combination of input vectors, each vector is weighted identically
- In Contrast: an outlier robust centroid weights outliers less strong than nearby vectors
- See talk in special session: SemaNLP

Outlier Robust Centroid

- ordinary centroid
- outlier robust centroid

Similarity Matrix

- In the following, we will focus on methods using the word similarity matrix F.
- Assuming the first text has n words, the second m
- Then the similarity matrix has $n \times m$ entries
- An entry F_{ij} specifies the similarity of word *i* of text 1 to word *j* of text 2
- We propose to use the matrix norm of this similarity matrix as similarity estimate

Basic Definitions: Text similarity

Let *t*, *u* be two text documents. Then sn(t, u) is a normalized similarity estimate (measure): \Leftrightarrow

- Reflexivity: *sn*(*t*, *t*) = *sn*(*u*, *u*) = 1
- Symmetry: sn(t, u) = sn(u, t)
- Boundedness: *sn*(*t*, *u*) ≤ 1

Basic Definitions: matrix norm

- Generalization of vector norm to matrices
- A measure how large the values of a matrix are
- Inherits usual vector norm properties
 - Positive definite: $\|\mathbf{A}\| \ge 0$ and $\|\mathbf{A}\| = 0 \Leftrightarrow \mathbf{A} = 0$
 - Subadditive: $\|\mathbf{A} + \mathbf{B}\| \le \|\mathbf{A}\| + \|\mathbf{B}\|$
 - Absolutely homogeneous: ||(aA)|| = |a| · ||A||
- Submultiplicative: $\|\mathbf{AB}\| \le \|\mathbf{A}\| \cdot \|\mathbf{B}\|$
- Spectral radius: ρ(A): largest absolute eigenvalue of A, not a matrix norm itself but lower bound of all matrix norms

Examples of matrix norms

Examples of matrix norms; **A** is an $m \times n$ matrix; $\rho(\mathbf{X})$ denotes the largest absolute eigenvalue of a squared matrix **X**.

Name	Definition
Frob. norm	$\ \mathbf{A}\ _{F} := \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} \mathbf{A}_{ij} ^{2}}$
2-norm	$\ \mathbf{A}\ _2 := \sqrt{ ho(\mathbf{A}^ op \mathbf{A})}$
L _{1,1} -norm	$\ \mathbf{A}\ _{L_{1,1}} := \sum_{i=1}^{m} \sum_{j=1}^{n} \mathbf{A}_{ij} $
1-norm	$\ \mathbf{A}\ _1 := \max_{1 \le j \le n} \sum_{i=1}^m \mathbf{A}_{ij} $
$\infty ext{-norm}$	$\ \mathbf{A}\ _{\infty} := \max_{1 \le i \le m} \sum_{j=1}^{n} \mathbf{A}_{ij} $

Basic definitions: Similarity matrix between documents

- *E*(*t*): normalized embedding matrix of document *t*, column *i* is the embedding vector of word *i* of document *t*
- Similarity matrix (slightly simplified) $\mathbf{F} = E(t)^{\top}E(u)$
- *F_{ij}*: cosine similarity of word i of document t and j of document u

Example

Document 1 contains two words

Document 2 contains three words

$$\mathbf{F} := \begin{bmatrix} 0 & 0.5 & 0.8 \\ 0.1 & 0.7 & 0.2 \end{bmatrix}$$

Estimated similarity between word 1 of document 1 and word 3 of document 2 is 0.8

Similarity Measure Induced by Matrix Norm

Apply matrix norm on similarity matrix and use result as similarity estimate

$$sn_i(t, u) := \frac{\|F(t, u)\|_i}{\sqrt{\|F(t, t)\|_i \cdot \|F(u, u)\|_i}}$$
(1)

Research Questions

For which matrix norms $||||_i$

- is sn_i a normalized similarity measure?
- is sn_i a valid SVM kernel?
- is sn_i independent of word order
- noise resilient

Additional question: How to deal with negative cosine similarity values, since matrix norms treat positive and negative values alike? In the following, we assume of cosine measure values are non-negative.

SVM

Support Vector Machine

- Supervised machine learning method
- Separates data by a hyperplane that maximizes the margin to the nearest vectors (called support vectors)
- Can transform the data prior to separation to higher dimensional space
- This transformation can be accomplished implicitly using a kernel function
- A kernel function is a similarity measure with certain properties (symmetry and positive-semidefiniteness)
- kernel matrix K: an item i,j of the kernel matrix K is the kernel function value of item i and j
- If a function is not a valid kernel (lacks one of the properties above), it is not guaranteed that the global optimum is found

SVM

	sim. measure	SVM kernel	indep word order	Noise resilient
sn _{sr}	X	X	X	✓
sn ₂	1	?	1	\checkmark
sn _F	1	?	1	\checkmark
sn ₁	X	X	1	\checkmark
<i>sn</i> _{L1,1}	1	?	1	×

sn_{sr}: similarity estimate induced by spectral radius.

Normalized Similarity Measure - Recap

- Reflexivity: *sn*(*t*, *t*) = 1
- Symmetry: sn(t, u) = sn(u, t)
- Bounded by one: *sn*(*t*, *u*) ≤ 1

Reflexivity

$$\mathbf{A} := E(t)$$
$$\mathbf{B} := E(u)$$
$$sn(t, t) = \frac{\|\mathbf{A}^{\top}\mathbf{A}\|}{\sqrt{\|\mathbf{A}^{\top}\mathbf{A}\| \cdot \|\mathbf{A}^{\top}\mathbf{A}\|}}$$
$$= \frac{\|\mathbf{A}^{\top}\mathbf{A}\|}{\sqrt{\|\mathbf{A}^{\top}\mathbf{A}\|^{2}}}$$
$$= \frac{\|\mathbf{A}^{\top}\mathbf{A}\|}{\|\mathbf{A}^{\top}\mathbf{A}\|}$$
$$= 1$$

E(t): Embedding matrix of document t, which contains normalized embedding vectors stacked together

(2)

Symmetry

For showing symmetry it is sufficient to verify: $||M^{\top}|| = ||M|| \forall M$

Boundedness by 1

- Usually most difficult to prove
- Needs advanced knowledge of linear algebra (trail, eigenvalues)
- Easier is to prove that boundness is violated, can be done just by a counter-example

Evaluation

- Evaluation on three contests
 - Contest 1: Participants elaborated on their dream holiday
 - Contest 2: Participants elaborated what they would do with a pair of sneakers
 - Contest 3: Participants explained for what they needed one of 4 potential prices
- Each answer was labeled by 3 marketing experts
- Unique label was obtained by majority voting over expert answers

Table: Obtained accuracy values for semilarity estimates induced by several norm and baseline methods. W2VC=Centroid of Word Embeddings.

Method	Contest				
	1	2	3	all	
Random	0.167	0.167	0.167	0.167	
ESA	0.357	0.254	0.288	0.335	
W2VC	0.347	0.328	0.227	0.330	
Skip-Thought-Vectors	0.162	0.284	0.273	0.189	
sn ₂	0.370	0.299	0.288	0.350	
sn _F	0.367	0.254	0.242	0.337	
sn ₁	0.372	0.299	0.212	0.343	
sn _{sr}	0.353	0.313	0.182	0.326	
sn _{sr} + W2VC	0.357	0.299	0.212	0.334	

Figure: Scatter Plots of W2VC (cos. of word2vec centr.) and snsr / sn2

(c) W2VC / sn_F

Figure: Scatter plots of cosine between centroids of Word2Vec embeddings (W2VC) vs *sn*.

Conclusion

- We presented an novel method to customer segmentation based on unsupervised natural language processing
- The prevalent approach to compare documents by cosine measure values of centroids is noise-vulnerable
- We described four methods that aim to reduce noise in the data
- One of these methods (matrix norms applied on similarity matrix) was evaluated and obtained overall superior results on three different contests