
Università degli Studi dell’Insubria
Dipartimento di Scienze Teoriche e Applicate

Software quality evaluation via static analysis

Luigi Lavazza
Dipartimento di Scienze Teoriche e Applicate

luigi.lavazza@uninsubria.it

The 14th International Conference on Software Engineering Advances

ICSEA 2019
November 24, 2019 – Valencia, Spain

Motivations

During software development, identifying and correcting defects as
soon as possible is of paramount importance, because the longer a
defect survives, the more expensive it is to remove it.

In this tutorial we concentrate on code defects (aka bugs). To minimize
the cost of detecting and correcting bugs, we must be able to identify
bugs in the coding phase.

We also would like to make the identification as quick and cheap as
possible.

To achieve these goals, tools performing static analysis of code can be
used.

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 2 -

Motivations

Static analysis tools are able to spot potential defects in code.

Due to theoretical limitations, they cannot indicate with certainty the
existence of a bug; hence their findings have to be verified by
developers.

Nonetheless, these tools can be very effective and efficient in spotting
bugs.

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 3 -

Contents

In this tutorial, we shall see how to use tools that analyze Java code, looking

for both "general" bugs and security flaws.

In additions, we shall have a look at measurement tools: these tools compute
code measures, which can be used to guide manual inspections,

classes or methods that feature extreme values of measures uysually

deserve to be analysed with greater attention

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 4 -

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 5 -

Automated static analysis

Static analysis makes it possible to analyze software artifacts–namely
code–without executing them.

Static analysis con be performed

Manually by people (via inspections)

Automatically, via tools

Of course, automated static analysis is possible only if the element to
be analyzed is written in a formal, machine-understandable language

Automated static code analysis is very effective

It can also be performed in addition to inspections

Beware: it has limits due to the undecidability of several interesting
properties.

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 6 -

Limits of automated static analysis

Unfortunately, many programs that would be very useful cannot be
written.

For instance, there is no program that, given two other programs
P1 and P2, is able to decide if P1 and P2 are equivalent.

Note: this fact has been formally demonstrated.

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 7 -

Limits of automated static analysis of code:

examples

We can easily find that a variable is used before being initialized in a
case like this one:

int n;

if (n>0) ...

On the contrary, we cannot be sure that the same problem occurs in a
case like this one:

int n;

... // some complex code here

if (n>0) ...

In general, we cannot predict if the
execution of some complex code will
result in initializing n.

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 8 -

Possible approaches to manage limits

Often, a tool cannot establish with certainty that a problem is bound to
occur.

Therefore, tools can be

Rigorous: only errors that the tool is sure will occur are reported.
The users must be aware that when the tool reports no errors,
some errors may occur anyway.

Pessimist: all possible errors are reported. The users must be
aware that not all reported errors are real errors, i.e., some may
never occur.

In both cases, users have to perform some work to “correct” the
indications provided by the tool.

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 9 -

Tools for static code analysis

Many tools are available

Several good open-source tools are available

In general a tool support just one programming language (or a very
small number of languages)

In this tutorial

We consider only automated static analysis of code.

Hence, “static analysis” will refer to “automated static analysis of
code”

We shall use a few specific tools

We shall analyse only Java code

We shall look in some detail at some types of problems that tools can
spot

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 10 -

Tools

A list is available at https://github.com/checkstyle/checkstyle/wiki/Java-
static-code-analysis-tools

SpotBugs (https://spotbugs.github.io/)

Formerly known as Findbugs

PMD

Checkstyle

Lint4J

Classycle

Jdepend

SISSy

Google Codepro

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 11 -

In this tutorial

We shall see SpotBugs at work

I am using the Linux version.

The same functionality is available in Windows

We shall use the stand-alone version

You can use SpotBugs from Maven and other environments

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 12 -

SpotBugs

Spotbugs.github.io

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 13 -

SpotBugs documentation

The documentation is available on line at
https://spotbugs.readthedocs.io/en/stable/index.html

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 14 -

Download and installation

See the documentation.

You just have to download and unzip a file.

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 15 -

Before usage

The tool analyses bytecode, hence you need to have the compiled
code.

The tool can visualize the code line where the problem was found

To this end, you need to provide the source code.

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 16 -

Usage (via demo)

Project creation

Analysis

Browsing results

Saving results

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 17 -

Spotbugs: analysis configuration

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 18 -

Analysis results

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 19 -

Bug

explanation

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 20 -

Example of analysis

Here we analyse Apache PDFBox® v. 2.0.14

An open source library of Java tools for working with PDF documents.

https://pdfbox.apache.org/

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 21 -

Bug classes

SpotBugs is able to detect several types of potential bugs.

In our case, we get bugs in the following classes:

Correctness

Bad practice

Experimental

Internationalization

Malicious code vulnerability

Performance

Security

Dodgy code

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 22 -

BUG: Bitwise OR of signed byte value

Loads a byte value (e.g., a value loaded from a byte array or returned
by a method with return type byte) and performs a bitwise OR with that
value. Byte values are sign extended to 32 bits before any bitwise
operations are performed on the value. Thus, if b[0] contains the value
0xff, and x is initially 0, then the code ((x << 8) | b[0]) will sign extend
0xff to get 0xffffffff, and thus give the value 0xffffffff as the result.

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 23 -

BUG: Bitwise OR of signed byte value

The following code for packing a byte array into an int is badly wrong:

int result = 0;

for(int i = 0; i < 4; i++) {

result = ((result << 8) | b[i]);

}

The following idiom will work instead:

int result = 0;

for(int i = 0; i < 4; i++) {

result = ((result << 8) | (b[i] & 0xff));

}

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 24 -

In our case

public int getFamilyClass()

{

return bytes[0] << 8 | bytes[1];

}

Where bytes is an array of byte

For us, it is hard to tell if this is an error. Probably, pdfbox developers
could evaluate the situation easily.

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 25 -

BUG: Call to equals() comparing different

types

This method calls equals(Object) on two references of different

class types and analysis suggests they will be to objects of different

classes at runtime. Further, examination of the equals methods that

would be invoked suggest that either this call will always return

false, or else the equals method is not be symmetric (which is a

property required by the contract for equals in class Object).

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 26 -

In our case

assertEquals("Null Value...", COSNumber.get(null));

where COSNumber.get is defined as follows:

public static COSNumber get(String number) throws

IOException

This is clearly an error. The code compares a COSNumber with a
String.

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 27 -

BUG: Non-virtual method call passes null

for non-null parameter

A possibly-null value is passed to a non-null method parameter. Either
the parameter is annotated as a parameter that should always be non-
null, or analysis has shown that it will always be dereferenced.

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 28 -

In our case

checkPerms(inputFileAsByteArray, "", null);

private void checkPerms(byte[] inputFileAsByteArray,

String password,

AccessPermission expectedPermissions) throws IOException

{

PDDocument doc = PDDocument.load(inputFileAsByteArray,

password);

AccessPermission currentAccessPermission =

doc.getCurrentAccessPermission();

// check permissions

assertEquals(expectedPermissions.isOwnerPermission(),

currentAccessPermission.isOwnerPermission());

This is clearly an error. In the considered case, the code tries to execute
isOwnerPermission of expectedPermissions, but expectedPermissions is
null.

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 29 -

BUG: Repeated conditional tests

The code contains a conditional test is performed twice, one right after
the other (e.g., x == 0 || x == 0). Perhaps the second occurrence is
intended to be something else (e.g., x == 0 || y == 0).

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 30 -

In our case

private void mergeFields(PDFCloneUtility cloner,

PDField destField, PDField srcField)

{

if (destField instanceof PDNonTerminalField &&

srcField instanceof PDNonTerminalField)

{

LOG.info("Skipping non terminal field " +

srcField.getFullyQualifiedName());

return;

}

if (destField.getFieldType() == "Tx" &&

destField.getFieldType() == "Tx")

Probably, the programmer intended to check the equality of destField
and srcField types: a typical copy&paste error.

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 31 -

More bugs

demo

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 32 -

Security

Several security problems (e.g., code vulnerabilities) can be identified
via static analysis.

SpotBugs can be used with a plug-in (SpotSecurityBugs) devoted
specifically to find security bugs.

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 33 -

SpotSecurityBugs

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 34 -

SpotSecurityBugs

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 35 -

BUG: Cipher is susceptible to Padding Oracle

This specific mode of CBC with PKCS5Padding is susceptible to
padding oracle attacks. An adversary could potentially decrypt the
message if the system exposed the difference between plaintext with
invalid padding or valid padding. The distinction between valid and
invalid padding is usually revealed through distinct error messages
being returned for each condition.

Code at risk:

Cipher c = Cipher.getInstance("AES/CBC/PKCS5Padding");

c.init(Cipher.ENCRYPT_MODE, k, iv);

byte[] cipherText = c.doFinal(plainText);

Solution:

Cipher c = Cipher.getInstance("AES/GCM/NoPadding");

c.init(Cipher.ENCRYPT_MODE, k, iv);

byte[] cipherText = c.doFinal(plainText);

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 36 -

BUG: Cipher is susceptible to Padding Oracle

References

Padding Oracles for the masses (by Matias Soler)

Wikipedia: Authenticated encryption

NIST: Authenticated Encryption Modes

CAPEC: Padding Oracle Crypto Attack

CWE-696: Incorrect Behavior Order

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 37 -

SpotSecurityBugs addresses well-

known security bugs, which have

been catalogued and described by
authoritative organizations.

BUG: Cipher with no integrity

The ciphertext produced is susceptible to alteration by an adversary.
This mean that the cipher provides no way to detect that the data has
been tampered with. If the ciphertext can be controlled by an attacker,
it could be altered without detection.

The solution is to used a cipher that includes a Hash based Message
Authentication Code (HMAC) to sign the data. Combining a HMAC
function to the existing cipher is prone to error [1]. Specifically, it is
always recommended that you be able to verify the HMAC first, and
only if the data is unmodified, do you then perform any cryptographic
functions on the data.

The following modes are vulnerable because they don't provide a
HMAC: - CBC - OFB - CTR - ECB

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 38 -

BUG: Cipher with no integrity

The following snippets code are some examples of vulnerable code.

Code at risk:

AES in CBC mode
cipher c = Cipher.getInstance("AES/CBC/PKCS5Padding");

c.init(Cipher.ENCRYPT_MODE, k, iv);

byte[] cipherText = c.doFinal(plainText);

Triple DES with ECB mode
cipher c = Cipher.getInstance("DESede/ECB/PKCS5Padding");

c.init(Cipher.ENCRYPT_MODE, k, iv);

byte[] cipherText = c.doFinal(plainText);

Solution:
cipher c = Cipher.getInstance("AES/GCM/NoPadding");

c.init(Cipher.ENCRYPT_MODE, k, iv);

byte[] cipherText = c.doFinal(plainText);

In the example solution above, the GCM mode introduces an HMAC
into the resulting encrypted data, providing integrity of the result.

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 39 -

The reliability of static analysis

In principle, static analysis tools may consider incorrect several
situations that are actually correct.

In practice, most of the bugs reported by SpotBugs are real bugs.
And when they are not, quite often they reveal that code was not
written in a very careful way.

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 40 -

Static code measures

Code measures were proposed to identify weakness in code design
and organization.

Several code measures are correlated to important software qualities
(like correctness and maintainability)

Hence, looking at measures we can identify the pieces of code that
could make maintainability harder, or that could make the software
more error-prone, etc.

In conclusion, we are interested in knowing the characteristics of our
code, as described by a set of measures.

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 41 -

Static code measures

Measures were defined for

Size

At different levels: system, class, method, ...

Complexity

At the function or method level

Coupling

At the class or subsystem level

Cohesion

At the class level

...

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 42 -

Measures and quality

A well modularized system is easier to maintain.

A well modularized system is characterized by modules (classes)
that have high cohesion and are loosely coupled.

A complex function (method) is more difficult to test and maintain

A complex function (method) is characterized by a large number of
independent paths in the flow graph (McCabe’s complexity).

Large methods are more difficult to maintain

...

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 43 -

Tools for code measurement

There are many, several open-source

Here we use Sourcemeter

https://www.sourcemeter.com/

Thorough documentation (covering also installation) is available at
https://www.sourcemeter.com/resources/java/

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 44 -

SourceMeter

A batch program: saves results in a set of files

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 45 -

How to use SourceMeter’s results

Most files are csv files: you can open them with a spreadsheet and
perform any type of analysis the spreadsheet is able to support.

Alternatively, you can read the file with a program you wrote and
perform any processing you like.

In what follows we shall see some processing performed via R
programs.

https://www.r-project.org/

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 46 -

McCabe Complexity

The distribution of McCabe complexity through PdfBox methods
(excluding those having CC=1, e.g., setters and getters).

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 47 -

There are several methods

having CC > 30

These methods are likely to

cause problems

Logarithmic

scale!

Excessively complex methods (CC≥30)

org.apache.xmpbox.DateConverter.toCalendar

org.apache.pdfbox.filter.Predictor.decodePredictorRow

org.apache.pdfbox.multipdf.PDFMergerUtility.appendDocument

org.apache.pdfbox.pdfparser.BaseParser.parseCOSString

org.apache.pdfbox.pdfparser.PDFStreamParser.parseNextToken

org.apache.pdfbox.pdfparser.PDFStreamParser.hasNoFollowingBinData

org.apache.pdfbox.tools.ExtractText.startExtraction

org.apache.pdfbox.tools.PDFToImage.main

org.apache.fontbox.afm.AFMParser.parseFontMetric

org.apache.fontbox.cff.Type1CharString.handleCommand

org.apache.fontbox.cff.Type2CharString.handleCommand

org.apache.fontbox.cmap.CMapParser.parseNextToken

org.apache.xmpbox.schema.AbstractXMPSchemaTest.testGetSetProperty

org.apache.pdfbox.pdmodel.fdf.FDFAnnotation.<init>

org.apache.pdfbox.pdmodel.fdf.FDFDictionary.<init>

org.apache.pdfbox.preflight.content.StubOperator.process

rchange.taggedpdf.PDLayoutAttributeObject.toString

org.apache.pdfbox.pdmodel.graphics.color.PDColorSpace.create

org.apache.pdfbox.pdmodel.graphics.image.CCITTFactory.extractFromTiff

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 48 -

Is high CC really dangerous?

Let us look at the most complex method:
org.apache.pdfbox.multipdf.PDFMergerUtility.appendDocument

This method is quite long (380 LoC, 330 effective LoC)

It has nesting level = 5

In conclusion, this is mainly a long method.

Splitting this method would make the code easier to test and maintain

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 49 -

False alarms

The next more complex methods are

org.apache.pdfbox.pdfparser.PDFStreamParser.parseNextToken

org.apache.fontbox.cmap.CMapParser.parseNextToken

These contain large switch statements. However, each case branch is
relatively short (the largest ones fit in a screen).

Hence, we do not need to worry about these methods.

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 50 -

Looking at classes

Some measures should be particularly effective in spotting problems

CBO (coupling between objects)

RFC (response for class)

WMC (weighted methods per class)

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 51 -

Coupling

The distribution of CBO through PdfBox classes.

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 52 -

Coupling above 30 is

definitely suspicious.

Possibly critical classes

The classes with highest CBO are

PDFMergerUtility

PDDocument

PageDrawer

Noticeably, these classes also have

Large number of LoC

High WMC

High RFC

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 53 -

Possibly critical classes

By examining the classes that have abnormal measures values, we
find that

They are critical in that they are quite important.

They collect several basic functionalities

Hence, they are widely used

It is necessary to pay particular attention to these classes

They should be tested more accurately than other classes

Their design should be polished and maintained with care

...

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 54 -

How to use measure in the development

process

In general, it is not possible to say that a measure being “too high” or
“too low” implies that problems are likely.

You have to “manually” inspect classes and methods whose measures
appear abnormal.

It is difficult to establish threshold such that a measure above a given
thresholds should always be considered too high

Similarly for too low values

You should continuously monitor the measures of classes and
methods. When a measure of a given element changes substantially,
you should investigate the reasons.

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 55 -

Code clones

Quite often, programmers just copy and paste pieces of code that are
needed in different parts of the system.

This is not a good practice in general, since it generates the double
maintenance problem.

If a piece of duplicated code is modified, usually it is necessary to
modify its copies as well, but very often this is not done. The result
is that you have inconsistency in code.

Even if all the copies are kept consistent, maintenance cost is
duplicated.

The solution consists in creating methods that can be called from
different places in the code, or in introducing super-classes that let the
same code become available in different sub-classes.

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 56 -

Defining code clones

Identifying code clones can be difficult, because in general we do not
look simply for pieces of code that are identical to each other.

We also want to spot pieces of code that are “very similar”.

Every tool supports its own interpretation of “very similar”.

You have to check the definition supported by the tool you are using.

Sometimes parameters are available to customize the concept of
code clone.

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 57 -

SourceMeter and code clones

SourceMeter is able to detect code clones.

Example:
1759~CloneClass [Number of Clone Instances: 2, Lines of Code: 18]

org\apache\pdfbox\rendering\PDFRenderer.java(494):

1760~CloneInstance [Ln:494, Col:9 - Ln:513, Col:10]

org\apache\pdfbox\rendering\PageDrawer.java(1818):

1761~CloneInstance [Ln:1818, Col:9 - Ln:1835, Col:10]

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 58 -

An example of similar blocks of code

SourceMeter finds several similar blocks of code throughout the
system.

Specifically, it finds similar blocks in

Method hasBlendMode in class PageDrawer

Method hasBlendMode in class PDFRenderer

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 59 -

Method hasBlendMode in class PageDrawer

private boolean hasBlendMode(PDTransparencyGroup group, Set<COSBase> groupsDone) {

if (groupsDone.contains(group.getCOSObject())) {

// The group was already processed. Avoid endless recursion.

return false;

}

groupsDone.add(group.getCOSObject());

PDResources resources = group.getResources();

if (resources == null)

return false;

}

for (COSName name : resources.getExtGStateNames()) {

PDExtendedGraphicsState extGState = resources.getExtGState(name);

if (extGState == null) {

continue;

}

BlendMode blendMode = extGState.getBlendMode();

if (blendMode != BlendMode.NORMAL) {

return true;

}

}

// Recursively process nested transparency groups

for (COSName name : resources.getXObjectNames()) {

// omissis

}

return false;

}
Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 60 -

Method hasBlendMode in class PDFRenderer

private boolean hasBlendMode(PDPage page){

// check the current resources for blend modes

PDResources resources = page.getResources();

if (resources == null){

return false;

}

for (COSName name : resources.getExtGStateNames()){

PDExtendedGraphicsState extGState = resources.getExtGState(name);

if (extGState == null){

// can happen if key exists but no value

// see PDFBOX-3950-23EGDHXSBBYQLKYOKGZUOVYVNE675PRD.pdf

continue;

}

BlendMode blendMode = extGState.getBlendMode();

if (blendMode != BlendMode.NORMAL){

return true;

}

}

return false;

}

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 61 -

Managing code clones

In the case of methods hasBlendMode, developers should consider
introducing a service method that can be used by both PageDrawer
PDFRenderer classes, in substitution of the duplicated code.

Developer could also consider placing the two classes in a
generalization hierarchy, so that the needed code can be inherited
from a common class.

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 62 -

Same class code clones

The previous example concerned a piece of code duplicated in different
classes.

It is also possible to find clones in the same class.

Example:
1628~CloneClass [Number of Clone Instances: 15, Lines of Code: 12]

org\apache\xmpbox\type\ResourceRefType.java(92): 1629~CloneInstance [Ln:92, Col:5 - Ln:103, Col:6]

org\apache\xmpbox\type\ResourceRefType.java(110): 1630~CloneInstance [Ln:110, Col:5 - Ln:121, Col:6]

org\apache\xmpbox\type\ResourceRefType.java(128): 1631~CloneInstance [Ln:128, Col:5 - Ln:139, Col:6]

org\apache\xmpbox\type\ResourceRefType.java(146): 1632~CloneInstance [Ln:146, Col:5 - Ln:157, Col:6]

org\apache\xmpbox\type\ResourceRefType.java(164): 1633~CloneInstance [Ln:164, Col:5 - Ln:175, Col:6]

org\apache\xmpbox\type\ResourceRefType.java(182): 1634~CloneInstance [Ln:182, Col:5 - Ln:193, Col:6]

org\apache\xmpbox\type\ResourceRefType.java(200): 1635~CloneInstance [Ln:200, Col:5 - Ln:211, Col:6]

org\apache\xmpbox\type\ResourceRefType.java(218): 1636~CloneInstance [Ln:218, Col:5 - Ln:229, Col:6]

org\apache\xmpbox\type\ResourceRefType.java(236): 1637~CloneInstance [Ln:236, Col:5 - Ln:247, Col:6]

org\apache\xmpbox\type\ResourceRefType.java(254): 1638~CloneInstance [Ln:254, Col:5 - Ln:265, Col:6]

org\apache\xmpbox\type\ResourceRefType.java(272): 1639~CloneInstance [Ln:272, Col:5 - Ln:283, Col:6]

org\apache\xmpbox\type\ResourceRefType.java(290): 1640~CloneInstance [Ln:290, Col:5 - Ln:301, Col:6]

org\apache\xmpbox\type\ResourceRefType.java(308): 1641~CloneInstance [Ln:308, Col:5 - Ln:319, Col:6]

org\apache\xmpbox\type\ResourceRefType.java(326): 1642~CloneInstance [Ln:326, Col:5 - Ln:337, Col:6]

org\apache\xmpbox\type\ResourceRefType.java(344): 1643~CloneInstance [Ln:344, Col:5 - Ln:355, Col:6]

All these clones are in class ResourceRefType

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 63 -

Clones in class ResourceRefType

public String getDocumentID() {

TextType absProp = (TextType) getFirstEquivalentProperty(DOCUMENT_ID, URIType.class);

if (absProp != null) {

return absProp.getStringValue();

}

else {

return null;

}

}

public String getFilePath() {

TextType absProp = (TextType) getFirstEquivalentProperty(FILE_PATH, URIType.class);

if (absProp != null) {

return absProp.getStringValue();

}

else {

return null;

}

}

. . .

. . .

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 64 -

Clones in class ResourceRefType

In this case the clones are due to a bad programming practice.

Duplicating the code can easily be avoided by defining a single method

public String getProperty(String PropertyName) {

TextType absProp = (TextType)

getFirstEquivalentProperty(PropertyName, URIType.class);

if (absProp != null) {

return absProp.getStringValue();

}

else {

return null;

}

}

Give this method, calling getFilePath() is equivalent to calling
getProperty(FILE_PATH), calling getDocumentID() is
equivalent to calling getProperty(DOCUMENT_ID), etc.

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 65 -

Clones in class ResourceRefType

If–for some reason–you need to keep methods getFilePath(),
getDocumentID(), etc. because you need to expose them in the

class interface, you can introduce a private method that performs the
core of the work, and each exposed method calls the private method.

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 66 -

Concluding remarks

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 67 -

The complete picture

68L. Lavazza @ ICSEA 2019

“Bugs”

Code
clones

Measures

SpotBugs
• Defects
• Bad programming

practices
• Etc.

SourceMeter

• Duplicated code
• Bad programming

practices

• Defects
• Bad programming

practices
• Etc.

Analyzed code

Manual inspection is needed,
because of false positives

Date now = new Date();
accettazionePCPM1GasNew.setDataCreazione(now);
accettazionePCPM1GasNew.setDataModifica(now);
accettazionePCPM1GasNew.setUsernameCaricamento((ActionU
tils.getUserLogged()!=null?ActionUtils.getUserLogged().
getUsername():"test"));
PCPM1Gas prev = (PCPM1Gas)
ActionUtils.getSessionAttribute
(net.atos.be.common.utils.Constants.BEAN_PREVENTIVO_PM1
_ACCETTAZIONE_GAS);
codPraticaLegacy = prev.getCodPraticaLegacy();
accettazionePCPM1GasNew.setPcPM1Gas(prev);
accettazionePCPM1GasNew.setDataPubblicazione(prev.getDa
taModifica());
if(accettazioneManager.save(accettazionePCPM1GasNew,
allegatoAccettazione, allegatoPagamento,
allegatoAltro)) {
try {

preventiviManager.addPreventiviPM1Status(accettazionePC
PM1GasNew.getPcPM1Gas(),

PreventiviPM1Status.DA_ACCETTARE);
// invia email all'utente

accettazioneManager.sendAccettazionePreventivoUploadNot
ifyEmail(prev.getUser(),

codPraticaLegacy);
} catch (Exception e) {
LOG.warn("Errore nell'invio dell'email all'utente

in seguito all'invio dei documenti per l'accettazione
del preventivo ");
}

}

FindSecBugs
Security
issues

• Vulnerable code

Software quality evaluation via static analysis

Static code analysis in the development

process

We saw that a tool like SpotBugs can provide useful indications
concerning the quality of code.

When and how should we use such indications?

Since the cost of removing bugs increases in time (the later you
remove a bug, the more expensive) we want to remove bugs as soon
as possible.

Hence, programmers should run SpotBugs before they release a new
version of their software.

As an additional measure, SpotBugs should be used before starting
testing.

Suppose SpotBugs finds several bugs in a new version of the
application to be tested: it does not make sense to perform testing
and find a lot of bugs we already knew were there.

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 69 -

Conclusions

Static analysis is easy and cheap

Although in general you have to check results manually

It can be nicely integrated in the development process

Good open-source tools are available

It can save a lot of time and money by spotting bugs as soon as the
code is written.

I do not see any good reason for not using static analysis on a regular
basis.

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 70 -

THANK YOU FOR YOUR ATTENTION!

Software quality evaluation via static analysisL. Lavazza @ ICSEA 2019 - 71 -

