
Effective Course Projects
for Teaching
Distributed-Application Development

Stephen W. Clyde
Utah State University



Distributed Systems and
Applications



Distributed Systems and
Applications

 Distributed Application: An end-
user system consisting of
software components running
on multiple host machines that
share resources and coordinate
their actions to complete a task
(or tasks) through message
passing

 Distributed System:
1. A distributed environment in which a

distributed application runs

2. Also, the distributed application and the
distributed environment together

Distributed Application

Distributed System1

Distributed System2

• multiple processes
• communicate through

messages passing
• share resources
• coordinate to complete

task(s)

• communication subsystem
• physical, virtual, and logical

resources



The Need

Students graduating in

Software Engineering, Computer Science,
or other related disciplines

need to know how to use, build, test,
deploy, maintain, and operate distributed

systems and applications



Knowledge, Skills, Abilities



Some Suggested Knowledge

 Underlying Theory of Distribution

 Common system models and architectures

 Desirable characteristics for distributed applications
(e.g. extensibility, scalability, maintainability, etc.)

 Design principles

 Best practices for implementation

 Testing theory and principles

 Requirements capture and analysis (including,
Business model, who are the actors, their use
cases, operational environment)

 Data engineering

 Data science



Some Required Skills

 Network communications

 Inter-process concurrency

 Intra-process concurrency (e.g. Threading)

 Proper handling of partial failures

 Managing multiple concurrent communication channels

 Task synchronization

 Efficient communication protocol design

 Testing and debugging techniques

 Modeling skills (Conceptual)

 Integration (including integration testing)

 Prototyping

 Technology research (and evaluation)



Some Required Abilities

 Evaluating design alternatives

 Making appropriate design choices that balancing requirements, cost,
and schedule

 Ability to achieving the following to an appropriate level in a variety of
circumstances

 Reliability, Security, Scalability, Extensibility, Maintainability

 and other desirable characteristics

 Return-of-investment

 The ability to read, understand, and evolve specification

 Teamwork

 Continuous Improvement

 Realization of abstracts into implementations



A Few Thoughts on Teaching

 Help students

 Gain knowledge

 Develop new skills

 Strengthen abilities

 Encourage students to

 Discovery ideas on their own

 Take initiative and be innovative

 Learn how to learn



Purpose of this Tutorial

 Explore ideas related

 Designing course projects so they are
engaging and cover as many of the knowledge
areas as feasible,

 Coaching students as their develop new skills
and to help them successful complete the
assignments

 Evaluating the student performance in
constructive ways that helps them improve
their ability to solve real problems



Tutorial’s Learning Objectives

 Gain a better understanding of the knowledge, skills, and
abilities that students need to be effective distributed-
application developers.

 Gain a better understanding of how distributed-application
development concepts can be taught in conjunction with
good software engineering principles and practices.

 Gaining new ideas about how to make a course project more
engaging.

 Gaining new insights into how to better coach students to
successful completion of a substantial project.

 Gain new insights into how to evaluate student performance
constructively.



Programming Assignments

 What makes a good programming
assignment?

 Relevant to student body and contain
course

 Customized to the right level

 Leaving open the opportunity to develop skills
and improve abilities

 Real-world problem (from industry)

 Resume building potential

 Non-functional requirements



Programming Assignments

 What is not necessary for a good
programming assignment?



Example of a Programming
Assignment

 Context:

 OO Software Development Course

 Seniors and 1st-year graduates

 1st programming assignment

 Current principles
 Become familiar with abstraction and modularity

 Become familiar with Localization of Design Decisions,
part of modularity and based on David Parnas’ work on
decomposition of modules

 Current skill

 The strategy pattern



Example of a Programming
Assignment

 Assignment Description

 Estimated time

 Learning Objectives

 Overview

 Instructions and Requirements

 Provided codes or materials (if any)

 Notes and Hints

 Review and Submission Instructions

 Grading Criteria

https://www.dropbox.com/s/5v59vele524ht2p/Sample-Assignment.pdf?dl=0



Exercise

 Using the Tello drone, design a programming
assignment for the following:

 Distributed Systems Design Course

 Seniors and 1st-year graduates

 1st programming assignment

 Current knowledge areas
 Request-reply communication patterns

 Intra-process concurrency

 Current skill
 Implementing UDP Communications

https://www.dropbox.com/s/zvy7z68dxlpq09k/Tello-User-Guide.pdf?dl=0



Coaching



Coaching

 What can an instructor do to coach or mentor
students during a programming assignment?



Coaching

 What kinds of ”help” from an instructor
will lessen the students’ opportunities to
develop their own skills?



Evaluation (Grading)



Evaluation

 What can an instructor doing when
evaluating a student’s performance to
help them improve their abilities?



Evaluation

 What should an instructor not do during
evaluation?



Summary


