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Quick Intro: SirongDBMS

» Infroduced Iin the paper
» StrongDBMS: Built from immutable components

» Database file Is the transaction log

» Verifies serialization of tfransactions
committed

» Relational client-server ACID design
» First Committer Wins concurrency control
» Under development: version 0.1

» Open Source: on github.com
» Implemented in C# and Java



StrongDBMS is an RDBMS

» Most disk-based RDBMS use pagefiles

» Pages Include data and indexes
» For 1970s this saved on RAM

» Today's RAM is larger:
» There are several memory-based RDBMS
» But then there Is no durability of commits

» StrongDBMS: log file Is committed data
» RAM contains indexes, uncommitted obs



TPC-C Benchmark

» In wide use since 1992 (tpc.org)
» Current version 2010
» For client-server systems

» OLTP simulation
» Warehouse(s) for 100000 products
» Each has 10 districts, 3000 customers each
» Orders have 5-15 order lines
» New Order typically involves 25 steps
» Committed New Orders is the measure



Testing: Two main modes

» First: Just see how fast the server copes
» With a stream of New Order activity

» Second: model real clerk behaviour
» Where each task takes minimum ~18 sec

» Conflicts built In to the specification
» The database must remain consistent

» Run fest for 10 minutes: same random gen
» Allows comparison between products

» Third: Find # of clerks for saturation



Simulating Clerk activity

» Specification is for a mix of tasks
» New Order
» Order status
» Stock level
» Delivery
» Delivery report
» Payment
» Clerk processing phoned-in orders etfc




The TPCC specification

» With several warehouses
» And 1 clerk per warehouse
» Design gives about 3-4% conflicts

» For me its Important to test conflicts

» All clerks are for the same warehouse
» This means that conflicts predominate



Task descriptions

» Each task has a screen-based form
» Fixed-font fixed format specified

» Fields to be filled In
» Feedback from server on each

» Order and payment commit data
» Status and reports have only read steps

» The data Is randomised, steps 1o0o

» Specified mix: of 23 options
» 10 new orders, 10 payment, 1 each of others



Task descriptions contd

» Minimum fime between tasks
» 0.5 sec new order, 3 sec payment
» 2 sec each for the others
» Minimum fime to start a tfask
» 15 sec for new order, 3 sec payment
» 10 sec order status, 2 sec each for others



Specified conflicts include

» The DISTRICT table has a NEXT_O_|ID
» Updated aft start of New order

» Both DISTRICT and WAREHOUSE have
YTD (year-to-date) columns

» Updated by committing Payment task

» STOCK table has S_QUANTITY for item
» Updated by entering Order line

» CUSTOMER table has BALANCE
» Updated by committing New order




Testing method

» The inifial state of the database

» As specificed by TPCC

» Used for every test
» First Test: Run 2000 new orders

» Measure elapsed fime (62 sec vs 20 sec)
» Second Test: Run for 10 minutes

» With different numbers of clerks

»|lused 1, 10, 20, 30,... until no progress
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Setup for Other DBMS

» Out of The box
» Create Database Tpcc

» All calls to BeginTransaction have
» IsolationLevel.Serializable

» No tuning or lock requests



Resulis

| Cleks | 10 | 20 | 30 | 40 | 50 | 60 | 100

153 | 187 | 263 | 284 | 296 | 302
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Analysis of results

» First: StrongDBMS is slower than the
commercial DBMS

» 30% as fast in Test |

» Second: StrongDBMS handles
concurrency better

» Assuming competitors use SERIALIZABLE
» For 1 clerk performance is identical



Ovutcomes: summary
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Demos (Strong, Other)

» Building initial database (25 min, 10 min)

» Cold Start (23 sec,-)
» 2000 Order transactions (3 min, 1T min)
» Simulated clerks (all 10 min)

» Any number you like

» Other databases
» Don't perform well with Serializable

» PostgreSQL RepeatableRead 364 for 98
clerks




Questions?

» hitps://aithub.com/MalcolmCrowe/Sh
areableDataStructures

» Strongdbms.com

» Shareabledata.org

» @MalcolmCrowe

» #StrongDBMS

» #ShareableDataStructures



https://github.com/MalcolmCrowe/ShareableDataStructures

