
Benchmarking 

StrongDBMS
MALCOLM CROWE AND CALLUM FYFFE

JUNE 2019



Quick Intro: StrongDBMS

 Introduced in the paper
 StrongDBMS: Built from immutable components

Database file is the transaction log

Verifies serialization of transactions 
committed

Relational client-server ACID design

First Committer Wins concurrency control

Under development: version 0.1

Open Source: on github.com

 Implemented in C# and Java



StrongDBMS is an RDBMS

Most disk-based RDBMS use pagefiles

Pages Include data and indexes

For 1970s this saved on RAM

 Today’s RAM is larger: 

There are several memory-based RDBMS

But then there is no durability of commits

StrongDBMS: log file is committed data

RAM contains indexes, uncommitted obs



TPC-C Benchmark

 In wide use since 1992 (tpc.org)

Current version 2010

For client-server systems

OLTP simulation

Warehouse(s) for 100000 products

Each has 10 districts, 3000 customers each

Orders have 5-15 order lines

New Order typically involves 25 steps

Committed New Orders is the measure



Testing: Two main modes

First: just see how fast the server copes

With a stream of New Order activity

Second: model real clerk behaviour

Where each task takes minimum ~18 sec

Conflicts built in to the specification

The database must remain consistent

Run test for 10 minutes: same random gen

Allows comparison between products

 Third: Find # of clerks for saturation



Simulating Clerk activity

Specification is for a mix of tasks

New Order

Order status

Stock level

Delivery

Delivery report

Payment

Clerk processing phoned-in orders etc



The TPCC specification

With several warehouses

And 1 clerk per warehouse

Design gives about 3-4% conflicts

For me its important to test conflicts

All clerks are for the same warehouse

This means that conflicts predominate



Task descriptions

Each task has a screen-based form

Fixed-font fixed format specified

Fields to be filled in

Feedback from server on each

Order and payment commit data

Status and reports have only read steps

 The data is randomised, steps too

Specified mix: of 23 options

10 new orders, 10 payment, 1 each of others 



Task descriptions contd

Minimum time between tasks

0.5 sec new order, 3 sec payment

2 sec each for the others

Minimum time to start a task

15 sec for new order, 3 sec payment

10 sec order status, 2 sec each for others



Specified conflicts include

 The DISTRICT table has a NEXT_O_ID

Updated at start of New order

Both DISTRICT and WAREHOUSE have 

YTD (year-to-date) columns

Updated by committing Payment task

STOCK table has S_QUANTITY for item

Updated by entering Order line

CUSTOMER table has BALANCE

Updated by committing New order



Testing method

 The initial state of the database

As specificed by TPCC

Used for every test

First Test: Run 2000 new orders

Measure elapsed time (62 sec vs 20 sec)

Second Test: Run for 10 minutes

With different numbers of clerks

 I used 1, 10, 20, 30,… until no progress



Record Requests



Setup for Other DBMS

Out of the box

Create Database Tpcc

All calls to BeginTransaction have 

 IsolationLevel.Serializable

No tuning or lock requests



Results

Clerks 10 20 30 40 50 60 100

StrongDBMS 130 153 187 263 284 296 302

MySQL 107 114 119 124 117

Commercial 111 127 132 16

Pyrrho 38 38

PostgreSQL 11

Commercial 6

Commercial 8



Analysis of results

First: StrongDBMS is slower than the 

commercial DBMS

30% as fast in Test 1

Second: StrongDBMS handles 

concurrency better

Assuming competitors use SERIALIZABLE

For 1 clerk performance is identical



Outcomes: summary

0

50

100

150

200

250

300

350

10 20 30 40 50 60 100

Completed New Orders vs No of Clerks

StrongDBMS MySQL Commercial Pyrrho PostgreSQL Commercial Commercial



Demos (Strong, Other)

Building initial database (25 min,10 min)

Cold Start (23 sec,-)

2000 Order transactions (3 min, 1 min)

Simulated clerks (all 10 min)

Any number you like

Other databases 

Don’t perform well with Serializable

PostgreSQL RepeatableRead 364 for 98 

clerks



Questions?

https://github.com/MalcolmCrowe/Sh

areableDataStructures

Strongdbms.com

Shareabledata.org

@MalcolmCrowe

#StrongDBMS

#ShareableDataStructures

https://github.com/MalcolmCrowe/ShareableDataStructures

