
Benchmarking 

StrongDBMS
MALCOLM CROWE AND CALLUM FYFFE

JUNE 2019



Quick Intro: StrongDBMS

 Introduced in the paper
 StrongDBMS: Built from immutable components

Database file is the transaction log

Verifies serialization of transactions 
committed

Relational client-server ACID design

First Committer Wins concurrency control

Under development: version 0.1

Open Source: on github.com

 Implemented in C# and Java



StrongDBMS is an RDBMS

Most disk-based RDBMS use pagefiles

Pages Include data and indexes

For 1970s this saved on RAM

 Today’s RAM is larger: 

There are several memory-based RDBMS

But then there is no durability of commits

StrongDBMS: log file is committed data

RAM contains indexes, uncommitted obs



TPC-C Benchmark

 In wide use since 1992 (tpc.org)

Current version 2010

For client-server systems

OLTP simulation

Warehouse(s) for 100000 products

Each has 10 districts, 3000 customers each

Orders have 5-15 order lines

New Order typically involves 25 steps

Committed New Orders is the measure



Testing: Two main modes

First: just see how fast the server copes

With a stream of New Order activity

Second: model real clerk behaviour

Where each task takes minimum ~18 sec

Conflicts built in to the specification

The database must remain consistent

Run test for 10 minutes: same random gen

Allows comparison between products

 Third: Find # of clerks for saturation



Simulating Clerk activity

Specification is for a mix of tasks

New Order

Order status

Stock level

Delivery

Delivery report

Payment

Clerk processing phoned-in orders etc



The TPCC specification

With several warehouses

And 1 clerk per warehouse

Design gives about 3-4% conflicts

For me its important to test conflicts

All clerks are for the same warehouse

This means that conflicts predominate



Task descriptions

Each task has a screen-based form

Fixed-font fixed format specified

Fields to be filled in

Feedback from server on each

Order and payment commit data

Status and reports have only read steps

 The data is randomised, steps too

Specified mix: of 23 options

10 new orders, 10 payment, 1 each of others 



Task descriptions contd

Minimum time between tasks

0.5 sec new order, 3 sec payment

2 sec each for the others

Minimum time to start a task

15 sec for new order, 3 sec payment

10 sec order status, 2 sec each for others



Specified conflicts include

 The DISTRICT table has a NEXT_O_ID

Updated at start of New order

Both DISTRICT and WAREHOUSE have 

YTD (year-to-date) columns

Updated by committing Payment task

STOCK table has S_QUANTITY for item

Updated by entering Order line

CUSTOMER table has BALANCE

Updated by committing New order



Testing method

 The initial state of the database

As specificed by TPCC

Used for every test

First Test: Run 2000 new orders

Measure elapsed time (62 sec vs 20 sec)

Second Test: Run for 10 minutes

With different numbers of clerks

 I used 1, 10, 20, 30,… until no progress



Record Requests



Setup for Other DBMS

Out of the box

Create Database Tpcc

All calls to BeginTransaction have 

 IsolationLevel.Serializable

No tuning or lock requests



Results

Clerks 10 20 30 40 50 60 100

StrongDBMS 130 153 187 263 284 296 302

MySQL 107 114 119 124 117

Commercial 111 127 132 16

Pyrrho 38 38

PostgreSQL 11

Commercial 6

Commercial 8



Analysis of results

First: StrongDBMS is slower than the 

commercial DBMS

30% as fast in Test 1

Second: StrongDBMS handles 

concurrency better

Assuming competitors use SERIALIZABLE

For 1 clerk performance is identical



Outcomes: summary

0

50

100

150

200

250

300

350

10 20 30 40 50 60 100

Completed New Orders vs No of Clerks

StrongDBMS MySQL Commercial Pyrrho PostgreSQL Commercial Commercial



Demos (Strong, Other)

Building initial database (25 min,10 min)

Cold Start (23 sec,-)

2000 Order transactions (3 min, 1 min)

Simulated clerks (all 10 min)

Any number you like

Other databases 

Don’t perform well with Serializable

PostgreSQL RepeatableRead 364 for 98 

clerks



Questions?

https://github.com/MalcolmCrowe/Sh

areableDataStructures

Strongdbms.com

Shareabledata.org

@MalcolmCrowe

#StrongDBMS

#ShareableDataStructures

https://github.com/MalcolmCrowe/ShareableDataStructures

