Benchmarking
StrongDBMS

MALCOLM CROWE AND CALLUM FYFFE
JUNE 2019

Quick Intro: SirongDBMS

» Infroduced Iin the paper
» StrongDBMS: Built from immutable components

» Database file Is the transaction log

» Verifies serialization of tfransactions
committed

» Relational client-server ACID design
» First Committer Wins concurrency control
» Under development: version 0.1

» Open Source: on github.com
» Implemented in C# and Java

StrongDBMS is an RDBMS

» Most disk-based RDBMS use pagefiles

» Pages Include data and indexes
» For 1970s this saved on RAM

» Today's RAM is larger:
» There are several memory-based RDBMS
» But then there Is no durability of commits

» StrongDBMS: log file Is committed data
» RAM contains indexes, uncommitted obs

TPC-C Benchmark

» In wide use since 1992 (tpc.org)
» Current version 2010
» For client-server systems

» OLTP simulation
» Warehouse(s) for 100000 products
» Each has 10 districts, 3000 customers each
» Orders have 5-15 order lines
» New Order typically involves 25 steps
» Committed New Orders is the measure

Testing: Two main modes

» First: Just see how fast the server copes
» With a stream of New Order activity

» Second: model real clerk behaviour
» Where each task takes minimum ~18 sec

» Conflicts built In to the specification
» The database must remain consistent

» Run fest for 10 minutes: same random gen
» Allows comparison between products

» Third: Find # of clerks for saturation

Simulating Clerk activity

» Specification is for a mix of tasks
» New Order
» Order status
» Stock level
» Delivery
» Delivery report
» Payment
» Clerk processing phoned-in orders etfc

The TPCC specification

» With several warehouses
» And 1 clerk per warehouse
» Design gives about 3-4% conflicts

» For me its Important to test conflicts

» All clerks are for the same warehouse
» This means that conflicts predominate

Task descriptions

» Each task has a screen-based form
» Fixed-font fixed format specified

» Fields to be filled In
» Feedback from server on each

» Order and payment commit data
» Status and reports have only read steps

» The data Is randomised, steps 1o0o

» Specified mix: of 23 options
» 10 new orders, 10 payment, 1 each of others

Task descriptions contd

» Minimum fime between tasks
» 0.5 sec new order, 3 sec payment
» 2 sec each for the others
» Minimum fime to start a tfask
» 15 sec for new order, 3 sec payment
» 10 sec order status, 2 sec each for others

Specified conflicts include

» The DISTRICT table has a NEXT_O_|ID
» Updated aft start of New order

» Both DISTRICT and WAREHOUSE have
YTD (year-to-date) columns

» Updated by committing Payment task

» STOCK table has S_QUANTITY for item
» Updated by entering Order line

» CUSTOMER table has BALANCE
» Updated by committing New order

Testing method

» The inifial state of the database

» As specificed by TPCC

» Used for every test
» First Test: Run 2000 new orders

» Measure elapsed fime (62 sec vs 20 sec)
» Second Test: Run for 10 minutes

» With different numbers of clerks

»|lused 1, 10, 20, 30,... until no progress

[N}
[N
l—l
]
IIE|
20
Ln
(&)
e
=

1n transaction
H_NAMEJH_STREET_llw_STREET_;JU CITY,W_ ETATE W EIP W _YTD frnm

i ks
[
L]

lad
lad
|_|
I.E.
=0
=0
CRENT
S k]
|_|
[
L ka2 =
[
[
s =
m
m

L
L

P
LN
(]
[]
|_|
g
[

s
[
iw =

Lad
Lad

Ln
|_'|
[N
S
|
[
§ s
i Ws
F Ws
LN LN LN
m
O = = =00
m

L
L

CUSTOMER uhPr"F- c:u:m
WAREHOUSE where W _ID=1

[
[
[

|
[T
Ca on
()]
-]
o
o
[T W 5 R 9
= L™
Fa B2 R B2 Fa R Ra Ra Ra
L™
(= S = T T e = T T i
L™

Fa Fa Ra R Ra ==

[

i
[N}
20
P
o0
LA
[=
[

ca
5 Mg
|
£

[N}

[N
[
[

2
2
2
332681.68686
2 9
2
2

iz

L

o0

Ln

N N |
[y

L]

L I
=

L
L

lﬂ4?1ﬂ3?l 1684728625
n transaction
t D TAX,D NEXT O ID from DISTRICT where D W ID=1 and D ID=3
W_TAX from WAREHOUSE where W _ID=1
tw DISTRICT where D W ID=1 and D ID=3 set D NEXT O ID=3@
ct E DI'HCHLIHT C LA'HT {I CREDIT fr‘nm {ILIHTI'HEFE uhwr‘w C W _ID=1 and

L Ca
N e |
L 23
LA

Ll
[y
20
[
=
fe
[|
=
I s L
s s
-
- E

L
o
iz
L
e
s
-

Lad
[y
[wa]
(¥)]
|
e L |
o WD
L ca
s s s
=
L™
s
-s

Ll Fa
[

§ Mg
[

[
Fd B Fa Ba & =

Lad
[y
ca
(%)]
L
Wy ka Ra Fa
|
L
(W H]
o
=
-s

i
|
i
[ary]
L
L
L
I.E|
=
[
.
=

Setup for Other DBMS

» Out of The box
» Create Database Tpcc

» All calls to BeginTransaction have
» IsolationLevel.Serializable

» No tuning or lock requests

Resulis

| Cleks | 10 | 20 | 30 | 40 | 50 | 60 | 100

153 | 187 | 263 | 284 | 296 | 302

R N BT I A e
Postgresau| | | |]
[Commeriol 6 | | | | |]
 Commerciol g | | | | | |

Analysis of results

» First: StrongDBMS is slower than the
commercial DBMS

» 30% as fast in Test |

» Second: StrongDBMS handles
concurrency better

» Assuming competitors use SERIALIZABLE
» For 1 clerk performance is identical

Ovutcomes: summary

350

300

250

200

150

100 — - -
50 — - -
0
10 20

Completed New Orders vs No of Clerks

StrongDBMS

30

MySQL ®m Commercial

40

Pyrrho

PostgreSQL

50

Commercial

60

Commercial

Demos (Strong, Other)

» Building initial database (25 min, 10 min)

» Cold Start (23 sec,-)
» 2000 Order transactions (3 min, 1T min)
» Simulated clerks (all 10 min)

» Any number you like

» Other databases
» Don't perform well with Serializable

» PostgreSQL RepeatableRead 364 for 98
clerks

Questions?

» hitps://aithub.com/MalcolmCrowe/Sh
areableDataStructures

» Strongdbms.com

» Shareabledata.org

» @MalcolmCrowe

» #StrongDBMS

» #ShareableDataStructures

https://github.com/MalcolmCrowe/ShareableDataStructures

