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1 Description

The efficiency of data management tools is predicated on how well their configuration (e.g. physical design, query
optimization mechanisms) matches the workload that they process. Database administrators are commonly responsible
for manually defining such configuration, but even for the most experienced practitioners finding the optimal remains
challenging when considering: a) the high number of configurable knobs and possible configurations, b) rapidly changing
workloads, and c) the uncertainty in predicting the impact of choices when based on cost models or assumptions (e.g.
knob independence) that might not fully match real-world systems[VAPGZ17].

To alleviate these challenges either fully or partially automated tools are used, supporting the selection of a configuration
given a workload (e.g. physical design advisory tools[CN07]). Specially relevant for building such kind of tools is the
incorporation of machine learning models, since these models can help the tools to learn from experience, reducing the
reliance on assumptions.

In recent years, building on the success of reinforcement learning methods (RL) at outperforming humans in highly
complex game scenarios, both academia[SSD18, MP18, KYG+18, DPP+18, OBGK18, TMM+18] and industry1

have proposed several self-driving data management solutions that learn from real-world signals using RL or deep
reinforcement learning (DRL, i.e., the combination of reinforcement learning methods, with neural networks for
function approximation[ADBB17, FLHI+18]). In this context, DRL is specially valuable because it enables models to
have a limited memory footprint, a competitive inference process and, when properly developed, models can generalize
well from past experiences to unknown states. Hence, this approach can have a large impact on how autonomous
systems are built.

Nowadays, with the increasing availability of open-source frameworks to support DRL, it is possible for data engineers
and developers to rapidly prototype self-driving DRL solutions, and embed them into the lifecycle of their applications.

In this tutorial we introduce the audience to the field by bringing together three perspectives. First, a theoretical
perspective, covering in detail the most commonly used DRL models. Second, a practical perspective, introducing
off-the-shelf DRL frameworks (such as Google Dopamine[CMG+18]2, Facebook Horizon[GCL+18]3 and Amazon
SageMaker4) and providing examples for tackling a simple data management use case (i.e., building an index advisor)
with these frameworks. Finally, we take an application perspective, reviewing recent developments in state-of-the-art
self-driving data management with DRL. To conclude we consider issues relevant to adopting self-driving DRL solutions
in production systems, and we highlight open research directions.

1https://blogs.oracle.com/oracle-database/oracle-database-19c-now-available-on-oracle-exadata
2https://github.com/google/dopamine/
3https://github.com/facebookresearch/Horizon
4https://aws.amazon.com/sagemaker
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2 Structure of the Tutorial

1. Motivation and Background on RL (10 minutes)
2. Introduction to DRL (10 minutes)
3. Main DRL methods (30 minutes)

(a) Value-based methods
(b) Policy gradient methods
(c) Model-based methods

4. Building an index advisor using off-the-shelf DRL frameworks (20 minutes)
5. Recent developments in self-driving data management with DRL (30 minutes)

(a) A general product development process
(b) Applications in storage engine management
(c) Applications in query processing
(d) Other applications

6. Assessing the production-readiness of self-driving data management DRL solutions (10 minutes)
7. Open directions (10 minutes)
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