

373	Aim of the Talk
Reutlingen University	Enhance the Graph Model (GM) for data modelling and answer the following questions: The GM suitable for data schemas?
Aim	⇒ Which enhancements to the GM are needed?
Challenges	⇒ Is it better matching the way we communicate reality?
LPG	⇒ What is the semantic expressiveness of the GM?
EGM	⇒ Is there support for multiple abstraction levels?
Examples	
Results Conclusion	∜ Contents
References	 ☞ Present the GM with some enhancements for our purpose ⇒ Formally compact, yet sufficient for the target aim ☞ Apply and compare the GM to prevailing data models ⇒ Show and discuss the results (benefits and pitfalls)
2 /14 © F. Laux	

347. 347.	Original Graph Definition
Reutlingen University	 A mathematical (directed) Graph G = (V,E) is defined as a set of Vertices V and a set of Edges E connecting 2 (ordered) vertices (u,v), with u,v ε V.
Aim Challenges LPG	
EGM Examples Results	The vertices can be numbered for identification and the edges may have "weight" for calculating the cost of a path.
Conclusion References	Shortcomings for data modelling:
	 (1) Two modelling elements are not sufficient to express data structures ⇔ e.g. even the relational model has 3 modelling elements ⇒ We want to distinguish different association types, e.g. inheritance, aggregation (2) The Graph Model is originally instance based
4 /14 © F. Laux	If we apply the GM on the Schema level, how can we ensure integrity constraints e.g. capture the multiplicity of an association?

347. 347.	Solving Shortcoming (1): Labeled Property Graph
Reutlingen University Aim Challenges	 Use 4 Model elements to capture more semantics ✓ Nodes (Vertices) ≈ objects ✓ Lines (Edges) either directed or undirected ≈ related objects ✓ Properties (of vertices and/or edges) ≈ detail information as key-value pairs ✓ Labels (of vertices) group nodes ≈ type/class name
LPG EGM Examples Results Conclusion References	 ▷ Definition: Labeled Property Graph (LPG) A (Labeled) Property Graph PG = (V, E, P, L) is a Graph where any x ∈ V ∪ E can have a subset P_x ⊆ P of properties (e.g. key-value pairs) attached to x. Nodes v and Edges e can have labels L_v, L_e ⊆ L. Labels serve on the meta-level (e.g. type)
5 /14 © F. Laux	Labeled Property Graph (LPG) Example → see Spyratos et al. ²) Vertex Label Vertex Car Vertex Edge Properties

	Solving Shortcoming (2): Graph-based Data Model (GDM)
Reutlingen University	 J. Hidders proposed a GDM for Schema Graphs³⁾ based on the Graph-Oriented Object Database⁴⁾ (GOOD) model. The idea is to use nodes for all meta-data (i.e. attributes & classes,) I believe, this makes the model too large and confusing We use properties to represent attributes and nodes for classes.
Aim	
Challenges	♥ We use the LPG as basis
LPG	Model elements (viewed as meta-data)
EGM	⇒ Nodes (Vertices) ≈ class/type (variable)
Examples	 ⇒ Lines (Edges) either directed or undirected ≈ association class/type ⇒ Properties (of vertices or edges) ≈ as property name:domain pairs
1	⇒ Labels (of vertices) classify nodes ≈ class/type name
Results	\sim Add cardinality to the edges \rightarrow see Angles ⁵⁾
Conclusion	⇒ Use UML like notation to specify the multiplicity of an association
References	Special types of association like generalization, aggregation, etc. may be expressed as labels to an edge.
	✤ The Enhanced GM (EGM) Example
	Person Car Motor Name:s owns Model: s 1 Age:num 1 Since:date 0*
6 /14 © F. Laux	Class / type (attributes)

Answering the Questions
 Is the GM suitable for data schemas? Yes, if the model is enhanced with properties, labels and edge cardinality
$\stackrel{_{\scriptstyle{\bigtriangledown}}}{\scriptstyle{\sim}}$ Is it better matching the way we communicate reality?
Provide the models considered in the examples all basically rely on
objects/entities/elements and associations/relationships.
\circledast What is the semantic expressiveness of the GM?
The EGM has less modelling power than XML schema and
UML class diagrams, but more than the RM. It is comparable to the ERM
♦ Is there support for multiple abstraction levels?
The model itself, responsibility of the designer
$\stackrel{_{\scriptstyle{\bigtriangledown}}}{\scriptstyle{\leftarrow}}$ Consequences of using the GM vs. other data models?
In general there is no real benefit as the modelling decisions
remain the same except if the target database is a Graph Database (no semantic mismatch) or link analysis is important

37	Lessons learned
Reutlingen University	♥ Use the EGM on the meta-level
	Model entities/classes as nodes
	Use labels for class names
Aim	In Model detail information (attributes) as properties
Challenges	It is a modelling decision whether to model a data element
LPG EGM	as property or as node (compactness vs. precision)
Examples	Model associations as edges and add properties if needed
Results	Tuse labels as association types (is-a, aggregate, etc.)
Conclusion	Add cardinalities to the association type.
References	
	In real world scenarios the GM tends to become
	large and confusing
	Suppress properties in the diagram
10/14	Use higher abstraction level aggregates like category, stereotype, component, etc. to provide an overview model
12 /14 © F. Laux	Model partial structures separately

	_	
373		References
Reutlingen University	1)	I. Robinson et al.: Graph Databases, 2 nd ed., O'Reilly Media, 2015
Aim Challenges LPG EGM	2)	N. Spyratos and T. Sugibuchi: PROPER - A Graph Data Model Based on Property Graphs, ISIP – 10 th International Workshop, Communications in Computer and Information Science, vol.622, Springer, 2015, pp. 23-35
Examples Results Conclusion References	3)	J. Hidders: "Typing Graph-Manipulation Operations", Proc. 9 th International Conference on Database Theory (ICDT), 2003, pp. 391-406
	4)	M. Gyssens et al.: "A graph-oriented object database model", IEEE Transactions on Knowledge and Data Engineering, Vol. 6, Num. 4, 1994, pp. 572–586
13 /14 © F. Laux	5)	<i>R. Angles: The Property Graph Database Model,</i> Proc. 12 th Alberto Mendelzon International Workshop on Foundations of Data Management, CEUR WS Proc., 2018, URL: http://ceur- ws.org/Vol-2100/paper26.pdf

