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Motivation



Classical tasks on complex networks

• Node classification
• Predict type of a given node

• Community detection
• Identify clusters of nodes

• Network similarity
• How similar are two (sub) networks

• Link prediction
• Predict weather two nodes will be linked
• Knowledge graph completition
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Link prediction task
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Bipartite network

u1

u2

u3

u4

u5

v1

v2

v3

v4

U

V

U = diseases, V = drugs

4



Methods



Methods overview
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SemRep

Example
Second phase of a double-blind study clinical trial on Sibutramine for
the treatment of patients suffering essential obesity

(PMID: 11360159)

SemRep

• Output:

(Sibutramine) − [:TREATS] − > (Obesity)

• UMLS Concept

• UMLS Semantic relation
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Semantic MEDLINE
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Baseline predictors for bipartite networks

Definition
Define Γ′(u) =

⋃
c∈Γ(u) Γ(c) which is a set of neighbors of node u’s

neighbors.

Definition

1. Common neighbors:

sCN′(u, v) = |Γ(u) ∩ Γ′(v)|

2. Jaccard coefficient:

sJC ′(u, v) =
|Γ(u) ∩ Γ′(v)|
|Γ(u) ∪ Γ′(v)|

3. Adamic/Adar:

sAA′(u, v) =
1

log(|Γ(u) ∩ Γ′(v)|)
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Machine learning workflow

Node features
(embeddings)

Learning algorithm
(neural network)Network data Model
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Machine learning workflow II



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...

... . . . ...
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Word embeddings: word2vec
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Network embedding idea
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DeepWalk (Perozzi et al., 2013)

1. Simulate many short random walks starting from each node

2. For each node u, get nearby nodes as a sequence of nodes visited by
random walks starting at u

3. For each node u, learn its embedding by predicting which nodes are
in the neighborhood
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node2vec (Grover & Leskovec, 2016)

Main idea
Use flexible, biased random walks that can trade off between local and
global views of the network.
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From node vectors (embeddings) to link vectors (embeddings)

Definition
Define binary operator over node vectors f (u) and f (v) to generate
composite link representation g(u, v). We consider:

1. Concatenation:
ui + vi

2. Average:
ui ⊕ vi

2
3. Hadamard product:

ui � vi

Example (Hadamard)(
1
2

)
�
(
3
4

)
=

(
1 · 3
2 · 4

)
=

(
3
8

)
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Results



Classification performance

Method Binary operator AUROC AUPR Preck mAP

CN – 0.86 0.86 0.86 0.64
JC – 0.85 0.84 0.86 0.62
AA – 0.81 0.74 0.82 0.54

DeepWalk
Co 0.83 0.86 0.96 0.79
Av 0.83 0.86 0.97 0.80
Ha 0.72 0.72 0.82 0.65

node2vec
Co 0.83 0.86 0.96 0.80
Av 0.83 0.86 0.97 0.81
Ha 0.72 0.73 0.83 0.65

Note: CN = Common Neighbors, JC = Jaccard Coefficient, AA = Adamic/Adar;
(Co)ncatenate, (Av)erage, and (Ha)damard binary operator; AUROC = area un-
der ROC curve, AUPR = area under PR curve, Prec@k = precision at k, mAP
= mean average precision
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Conclusions



Summary

• We investigate the representation learning in bipartite drug-disease
network of semantic predications

• We design a deep neural network model that includes the graph
structure into the embedding

• We found evidence that DeepWalk and node2vec outperformed
baseline predictors in terms of Prec@k and mAP

• Future work:
• Extend the study to all predication types in SemMedDB
• Domain expert for results interpretation
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