

This project has received funding from the European Union's H2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement

This work is supported by the TUBITAK-2501 project #218E068.

No 691178.

COMPUTING WITH NANO-CROSSBAR ARRAYS

Mustafa Altun, PhD

Electronics & Communication Engineering Istanbul Technical University

Web: http://www.ecc.itu.edu.tr/

Oct. 28th, 2019

The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics (CENICS'19)

Project Details

- Gathers globally leading research groups working on nanoelectronics and EDA
- Targets variety of emerging technologies including nanowire/nanotube crossbar arrays, magnetic switch-based structures, and crossbar memories
- Contributes to the construction of emerging computers beyond CMOS by proposing nano-crossbar based computer architectures.

Budget: 724500 EURO

• **Dr. Mustafa Altun, – Coordinator** – Emerging Circuits and Computation Group, Istanbul Technical University, Turkey

- Dr. Dan Alexandrescu, IROC Technologies, Grenoble, France
- Dr. Lorena Anghel, TIMA Lab., Grenoble, France
- Dr. Valentina Ciriani, ALOS Lab., University of Milan, Italy.
- Dr. Csaba A. Moritz, Nanoscale Computing Fabrics Lab., University of Massachusetts, USA
- Dr. Kaushik Roy, Nanoelectronics Research Lab., Purdue University, USA
- **Dr. Georgios Sirakoulis**, Department of Electrical and Computer Engineering, Democritus University of Thrace, Greece
- **Dr. Mircea Stan**, High-Performance Low-Power Lab., University of Virginia, USA
- **Dr. Mehdi B. Tahoori**, Dependable Nano-Computing Group, Karlsruhe Institute of Technology, Germany

DEMOCRITUS UNIVERSITY OF THRACE

Project Details

Project Details

Two-terminal vs. Four-terminal

Two-terminal vs. Four-terminal

Shannon's work: A Symbolic Analysis of Relay and Switching Circuits(1938)

Parallel: $x_1 + x_2$

Series: x_1 . x_2

2C:	Die Photos			6C: 1.17B Transistors 12MB L3				
384M Transistors 4MB L3	1	ΠÜ			introller Incore	U.U.	ii .	
Core1 Core0	Core0 V-Core	Core1 V-Core	Core2 V-Core	Punggung	Core3 V-Core	Core4 V-Core	Core5 V-Core	
		L3		LO F		L3		
Cache Westmere 2C		Cache V-Uncored Westmer			and the second			i ac

Two-terminal vs. Four-terminal

(a)

(b)

What are the Boolean functions implemented in (a) ad (b)?

Logic Synthesis

FET-based Model

From Snider, G., et al., (2004). CMOS-like logic in defective, nanoscale crossbars. Nanotechnology.

FET-based Model

Example: Implement the Boolean function f = A' with FET based nanoarrays using CMOS-like logic.

FET-based Model

Example: Implement the Boolean function f = (A B + CD)' with **FET** based nanoarrays using **CMOS**-like logic.

Four-terminal Switch-based Model

3 × 3 2D switching network and its lattice form

Four-terminal Switch-based Model

- Switches are controlled by Boolean literals.
- \Box f_L evaluates to 1 iff there exists a top-to-bottom path.
- \square g_L evaluates to 1 iff there exists a left-to-right path.

Logic Synthesis Problem

How can we implement a given target Boolean function f_T with a lattice of four-terminal switches?

Logic Synthesis Problem

Synthesis Method

Example: $f_T = x_1 x_2 x_3 + x_1 x_4 + x_1 x_5$

- Start with f_T and its dual.
- Assign each product of f_T to a column.
- Assign each product of $f_T{}^D$ to a row.
- Compute an intersection set for each site.
- Arbitrarily select a literal from an intersection set and assign it to the corresponding site.

$f_T^{\ D} = (x_1 + x_2 + x_3)(x_1 + x_4)(x_1 + x_5)$ $f_T^{\ D} = x_1 + x_2 x_4 x_5 + x_3 x_4 x_5$					
	$egin{array}{c} x_1 \ x_2 \ x_3 \end{array}$	$\begin{pmatrix} x_1 \\ x_4 \end{pmatrix}$	$x_1 \\ x_5$		
x_1	x_1	x_1	x_1		
$x_2 x_4 x_5$	<i>x</i> ₂	50	<i>x</i> ₅		
$x_3 x_4 x_5$	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅		

Experimental Results

Implementation of fxore with different nanocrossbar types

Experimental Results

Туре	Array Size Formulas
Diode	(number of products in f) x ("number of literals in f "+
	1)
FET-	(number of literals in f) x ("number of products in f "
CMOS	+ "number of products in $f^{\bar{D}}$ ")
Four-	(number of products in f) x (number of products in f^{D})
terminal	(number of products $\inf f$) x (number of products $\inf f$)

Benchmark	FET-CMOS	Diode	4-Terminal	Optimal 4-Terminal
Del 2	72	36	16	12
Del 5	35	15	12	6
Del 6	36	18	9	6
Ex5 31	156	104	32	24
Ex5 33	110	77	21	21
Ex5 46	81	54	18	18
Ex5 49	72	54	12	12
Ex5 50	81	63	14	14
Ex5 61	64	48	12	12
Ex5 62	49	35	10	10
Misex1 1	48	16	8	8
Misex1 2	132	55	35	15
Misex1 3	156	60	40	24
Misex1 4	121	44	28	16
Misex1 5	90	45	25	15
Misex1 6	143	66	42	18
Misex1 7	81	36	20	15
Mp2d 4	345	75	90	24
Newtag	108	72	32	18

Defect/Fault Tolerance

Defect/Fault Tolerance

Permanent Faults occur mostly in fabrication and are tolerated in post-fabrication by redundancy and reconfigurability (mapping). **Transient Faults** occur in field and are tolerated by redundancy

Defect/Fault Tolerance

- Defect tolerance is achieved by realizing a target logic function on a defective crossbar using row and column permutations
- For the worst-case, N!M! permutations are required to find a successful mapping for NXM crossbar.
 - Defect-unaware algorithms aim to find the largest possible kXk defect-free sub-crossbar from a defective NXN crossbar where k ≤ N;
 - Defect-aware considers the defect characteristics (stuck-at-0 or stuck-at-1), then decide which switch to employ during the mapping.

Technology Development for FET/Diode/Memristor based Arrays

POST CMOS TECHNOLOGIES

Technology Development for Four-Terminal Switch based Arrays

How about the technology?

- We propose CMOS-compatible technology with TCAD simulations
- By fitting the TCAD data to the standard CMOS current-voltage equations, we develop a Spice model of a four-terminal switch
- We are currently working toward the fabrication.

Device Structures

- 1: Diffusion region 2: Gate electrode 3. Gate insulator region
- 4: Local Oxidation of Silicon (LOCOS) or Shallow Trench Isolation (STI) layers
- 5: Bulk layer

Device Structures

- 1: Diffusion region 2: Gate electrode 3. Gate insulator region
- 4: Local Oxidation of Silicon (LOCOS) or Shallow Trench Isolation (STI) layers
- 5: Bulk layer

Device Structures

- 1: Diffusion region 2: Gate electrode 3. Gate insulator region
- 4: Local Oxidation of Silicon (LOCOS) or Shallow Trench Isolation (STI) layers
- 5: Bulk layer

Emerging Circuits and Computation Group Web: http://www.ecc.itu.edu.tr/

THANK YOU!