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Permanent Defect
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Two-terminal vs. Four-terminal

CMOS transistor Two-terminal switch
Control
=L Closed Open
o— —0 o o o0— —o0
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Two-terminal vs. Four-terminal

Shannon’s work: A Symbolic Analysis of Relay and
Switching Circuits(1938)
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Two-terminal vs. Four-terminal
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What are the Boolean functions
Implemented in (a) ad (b)?




Logic Synthesis
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Diode/Memristor-based Model

Nano array Controllable crosspoint
Closed Open
i
l Diode connection No connection
between wires between wires
Crosspoint




Diode/Memristor-based Model

Example: Implement the Boolean function f = A+B with diode
based nanoarrays.
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Diode/Memristor-based Model

Example: Implement the Boolean function f = AB with diode
based nanoarrays.

—o f | ) | foO
D

Diode-resistor logic




Diode/Memristor-based Model

Example: Implement the Boolean function f = AB + CD with

diode based nanoarrays.
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FET-based Model

configurable
PFETS 7* configurable
nFETS
metal
nanowires configurable
switches
\
AN J . J
A hd
p-type nanowires n-type nanowires

From Snider, G., et al., (2004). CMOS-like logic in defective, nanoscale crossbars. Nanotechnology.



FET-based Model

Example:

Implement the Boolean function f = A’ with FET
based nanoarrays using CMOS-like logic.




FET-based Model

Example: Implement the Boolean function f = (AB + CD)’ with
FET based nanoarrays using CMOS-like logic.
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Four-terminal Switch-based Model
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3 x 3 2D switching network and its lattice form



Four-terminal Switch-based Model

Switches are controlled by Boolean literals.
f, evaluates to 1 iff there exists a top-to-bottom path.
g, evaluates to 1 iff there exists a left-to-right path.
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Logic Synthesis Problem

How can we implement a given target Boolean function
f+ with a lattice of four-terminal switches?

Example: fi =X XX3+XX,
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Logic Synthesis Problem

Example: f; = X XoXg+X XX Xz
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Synthesis Method

Example: fr = XqXpXg+X XX Xs Fr2 = (XX +Xg) (X +X,) (X +Xs)
. . 1P = Xq + XoX4Xg + XXX
Start with f; and its dual. T T TR e
. X
Assign each product of f; to a x; Xy
column. X3 @ X5
Assign each product of f:Pto

a row.
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Experimental Results

Implementation of fxr. With different nanocrossbar types
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Experimental Results
I

Type Array Size Formulas
Diode (number of products in f7) );)(“number of literals m f ™+
FET- (number of literals in f) x (“number of products in f~
CMOS + “number of products in £27)

¢ el;(l)lu';al (number of products in ) x (number of products in f7)
Del 2 72 36 16 5
Del 5 35 15 B 6
Dcl 6 36 18 9 .
Ex5 31 156 104 32 24
Ex5 33 110 77 21 21
Ex5 46 81 54 T o
Ex5 49 72 54 D b
Ex5 50 81 63 14 i
Ex5 61 64 48 D b
Ex5 62 49 35 10 0
Misexl 1 48 16 A 3
Misex] 2 132 55 35 15
Misex!1 3 156 60 10 24
Misex! 4 121 44 8 16
Misex1 5 90 15 5 2
Misex!1 6 143 66 5 18
Misex!1 7 81 36 20 5
Mp2d 4 345 73 ) o
Newtag 108 7 3 3




Defect/Fault Tolerance

Defect-aware Defect-unaware Defect-aware




Defect/Fault Tolerance

]
Nano-Crossbhar Array
Input Lines

/)]

o) .

5 O : Stuck-at-zero switch
= @ : Stuck-at-one switch
§' @ : Configurable switch

Permanent Faults occur mostly in fabrication and are tolerated in
post-fabrication by redundancy and reconfigurability (mapping).
Transient Faults occur in field and are tolerated by redundancy



Defect/Fault Tolerance

Defect tolerance is achieved by realizing a
target logic function on a defective crossbar
using row and column permutations

For the worst-case, NIM! permutations are
required to find a successful mapping for NXM
crossbar.

Defect-unaware algorithms aim to find the

largest possible kXk defect-free sub-crossbar
from a defective NXN crossbar where k < N;

Defect-aware considers the defect characteristics
(stuck-at-0 or stuck-at-1), then decide which
switch to employ during the mapping.



Technology Development for
FET/Diode/Memristor based Arrays

POST CMOS TECHNOLOGIES



Technology Development for Four-
Terminal Switch based Arrays

How about the technology?

We propose CMOS-compatible technology
with TCAD simulations

By fitting the TCAD data to the standard
CMOS current-voltage equations, we develop
a Spice model of a four-terminal switch

We are currently working toward the
fabrication.



Device Structures
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1: Diffusion region 2: Gate electrode 3. Gate insulator region
4. Local Oxidation of Silicon (LOCOS) or Shallow Trench Isolation (ST1) layers

5: Bulk layer




Device Structures
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Device Structures
]

i
il n-f{ ||||| |||| "il* II
ll||| ’,I:Il:::IIIII ""“'Iil;;'l'l' ||I||:|||||I|“I| ""llllllln"\\ |||II
E “ wlﬂlmm = -':iimllll I|||||||::n“|| “".- “iwlm}u/
= M‘ﬂ """" ‘oz
N P
\\\\\/m///

1: Diffusion region 2: Gate electrode 3. Gate insulator region
4. Local Oxidation of Silicon (LOCOS) or Shallow Trench Isolation (ST1) layers

5: Bulk layer
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