HOCHSCHULE
HANNOVER
UNIVERSITY OF
APPLIED SCIENCES
AND ARTS

Fakultdt 1V

Wirtschaft und
Informatik

Service Computation 2018
February 18 — 22, 2018

Keynote Speech on

Microservices
— A modern, agile approach to SOA —

Andreas Hausotter
University of Applied Sciences and Arts, Hannover
Faculty of Business and Computer Science




Agenda

Chapter 1 Introduction

Chapter 2 Architectural Tasks and Challenges

Chapter 3 Patterns for Resilience and QoS
Chapter 4 Applications and Examples
Chapter 5 Technology Solutions

Chapter 6 Summary and Conclusions

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel

N



Microservices — Introduction
Motivation — A common scenario for a web application

Online shop system with basic functionalities:

« Search for products (e.g. by name and/or category),
» view product details (including pictures etc.),
» purchase products (place in basket, proceed to checkout) and

» submit and view product reviews.

Typical Requirements:

* Interoperability: Support a variety of different clients
(web browser, mobile applications etc.)

* Maintainability: Enable frequent and rapid changes
« Scalability: Handle sudden increases in user activity

« Availability: Minimise downtime (= financial loss)

-> Traditional Approach: Monolithic Architecture

w
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Microservices — Introduction
Monolithic Architecture — The traditional approach to web applications

Properties:

» Single process

* Single database

Process

Advantages:

Monolith » Easy development
(for example, communication via

—
- simple method calls)
» Easy deployment
(deployment of a single artefact)

» Application as a whole is scalable
(via load balancer)

N
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Microservices — Introduction

Process

Monolithic Architecture — Challenges

Monolith

.

=
- :
i/

—*| Shared
Database

Scenario: The shop is very successful and the project grows steadily
* Number of components and LOC increases as more features are added

* More project members are required for development, QA, design etc.

Challenges:

« Communication overhead between project members
» Decrease in development speed due to increased complexity

* Deployments (and updates) become less frequent

-> Idea: Limit responsibilities of individual project members to

individual components instead of entire monolith
(e.g. by creating smaller teams).
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Microservices — Introduction
Microservice Architecture — Decomposing the Monolith

Concept: Decompose complex applications into smaller units
(usually single tasks or even subtasks)

Properties of a Microservice:

« Self-contained unit providing its on persistence layer etc.
 May be deployed to an arbitrary number of processes

» Clearly defined scope of responsibility (loose coupling; high cohesion)

« Owned by a single team

: : | Process
(responsible for development [and operation])

Process

| Microservice
\ Microservice B
A ﬁ
|
@ Process

Microservice

-> Motto: “You build it, you run it!”
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Vorführender
Präsentationsnotizen
Operation of a service container is not necessarily done by the team, depending on the scale of the environment. Bigger companies and more complex service architectures will still require a dedicated team for operations, which will only receive a container from the service team and take over operations from that point on.


Microservices — Introduction
Microservice Architecture — What is the difference to a SOA?

Microservices are considered a specialisation of SOA.

» All microservice architectures are also service-oriented architectures.
* Microservices introduce additional constraints to SOA:
» All services must be deployable independent from one another.
 Size and domain of a microservice are limited (no limitations in SOA).
* Every service runs in its own process and contains its own storage.
* No need for an ESB, services handle communication individually.

A SOA can be comprised of or integrate with multiple microservices.
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Microservices — Introduction
Microservice Architecture — Advantages

L B |

C

|
|
| O
| Microservice Application |

« Each microservice can be deployed and scaled independently

Advantages:

« Ownership by a single, small team (developer, designer, [administrator] ...)
reduces communication overhead among project members

 Small size & limited scope allow for easy replacement of individual services

* Rapid development lifecycle promotes continuous integration

-> But: These advantages can quickly turn into challenges!

Consequence:

Microservices require strict adherence of developers to guidelines
provided by architects to prevent introduction of dependencies.
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Microservices — Tasks and Challenges
Decomposition — The art of dividing and decoupling

Problem with Monoliths:

» Refactoring is necessary to conform to initial architectural vision

Benefit of Microservices:

« Small enough to replace entire service in case of major changes

» Keeps code rot in check due do limited number of LOC per service

Challenges:

« Small enough, but not too small
Choosing the correct size for a microservice is important to prevent the
overhead from outweighing the benefit.

 Durable Interfaces
Replacements should not introduce changes to provided interfaces as
this would incur additional changes in other services.
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Microservices — Tasks and Challenges
Deployment — What is deployed when and how frequently?

Problem with Monoliths: Fixed deployment cycles which may lengthen over time

Benefit of Microservices:

* No fixed deployment schedule (e.g. once per month or quarter)
« Teams may deploy frequently and independently from one another

* New features and changes can be shipped more rapidly

Challenges:

 Loose Coupling: A change in one microservice should not
(or in practice very rarely) require a change in another microservice.

« Availability and Continuous Integration (Cl): There must always be a fully
tested version available to all other services, while the diversity of deployed
versions should be kept low.
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Microservices — Tasks and Challenges
Technology Heterogeneity — Advantages and Challenges

Advantages of Microservices:
« Every services appears as a black box to other services.
 Teams can always use the “best tool for the job” within their own service.

(e.g. data storage paradigm, programming language, libraries, build chain)

Challenges:

« Overall complexity increases (e.g. licensing, architecture overview)
 Employees cannot easily be reassigned between teams (missing expertise)

« “Bus factor”: Can development on a microservice continue when a
developer leaves the company?
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Microservices — Tasks and Challenges
Technology Heterogeneity — Advantages and Challenges

Examples

Different microservices may use fundamentally different technology stacks.

O A
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Microservices — Tasks and Challenges
Scalability — Independence vs. communication overhead

Advantages of Microservices:
« Each service runs in a process of its own and provides its own storage.
- Microservices can be scaled independently from each other.

« Modularity allows easy deployment of additional service instances.

Challenges:

« Services must be able to scale vertically as well as horizontally.

» Every instance must be able to answer a request, potentially introducing
communication overhead between instances.

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel



Microservices — Tasks and Challenges
Scalablility — Independence vs. communication / syncronization overhead

Scenario 1:

» All services are provided with an
equal amount of resources.

Scenario 2:

* B and C continue to share resources.

» As provided with dedicated resources.

Scenario 3:

e B and C continue to share resources.

e Additional instances of A and C are
created with dedicated resources.
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Microservices — Tasks and Challenges
Communication between Microservices — Patterns and Models

Advantages of Microservices:

« Direct communication between services lifts the requirement for a centralised
enterprise service bus.

* Inter-service communication patterns can be chosen as needed.

Challenges:

« Communication between services becomes more complex:
* Will cross process and potentially even data center boundaries,
« can no longer be handled via method calls (monolith) and
* requires (potentially expensive) inter-process communication.

* Interfaces should not be too fine-grained to reduce overhead.

e Calls to other services can not be considered instantaneous and must be
handled in a non-blocking manner.
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Microservices — Tasks and Challenges
Communication between Microservices — Patterns and Models

Examples of Communication Patterns:
« Request Response
 Immediate answer (e.g. via HTTP using a RESTful API)
« Simple, direct and intuitive, but potentially blocking.

* Requires polling if service A wants to keep track of the state of B

~——  1.Request = T—_
Service Service
Provider Consumer
™~ 2.Response
[
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Microservices — Tasks and Challenges
Communication between Microservices — Patterns and Models

Examples of Communication Patterns:

 Publish Subscribe (Event-based communication)
» Spatial Decoupling: Arbitrary number of publishers and subscribers
 Temporal Decoupling: Messages may be delivered at any time
o Subscribers are automatically notified on new messages

* Asynchrony may increase complexity

1. Subscribe
Publisher Subscriber
/ 3. Publish
w‘ 4. Notify
2. External Subscribers
Request [ ]
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Microservices — Tasks and Challenges
Communication — Request Response vs. Event-Based

Event
* LA (sudden) occurrence”

0. Widder. (2013). geek&poke. Available: http:

Request - Response
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Microservices — Tasks and Challenges
Monitoring — Keeping Track of Key Metrics

Advantages of Microservices:
» Replaceability and small scope of individual services allows for quick
reactions and precise localisation of issues.

Challenges:

» Distributed logs etc. need to be collected and aggregated

« Events pertaining to the same, initiating request need to be correlated
across all APIs to trace back downstream errors (e.g. using a shared request id).

* Must keep track of various metrics and key performance indicators (KPI)
o System Level: CPU load, memory consumption, I/O operations, ...
 Application Level: Response times, error rates, ...

» Reliable and fail-safe: Monitoring blackouts are a worst-case scenario, as
there is no way to tell, how the entire system behaves during that time.
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Microservices — Patterns for Resilience and QoS
Circuit Breakers — Preventing Failures from Cascading

Problem:

Performance issues of a downstream service can impact upstream services.
ldea:

» Monitor services to detect issues and potential failure as early as possible

* Provide fail-fast or fall back mechanism to prevent upstream cascades

Service boundary Service boundary Service boundary Service boundary

Calling Calling Calling Calling

Code Calling Code Calling Code Calling Code Calling
Code ( Code Code Code

Reset
broken
circuit

Calls start Requests Check for
failing or IEURER recovery

’ Down- Down- Down- Down-
time out

stream stream stream stream

Service Service Service Service

of service

Based on: [Newman2015]
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Microservices — Patterns for Resilience and QoS
Circuit Breakers — Example: Netflix OSS — Hystrix

Hystrix — An OSS resilience solution for microservices
* Wraps calls to dependencies to track successes, failures, timeouts, ...
* Provides a fail fast mechanism to prevent blocking requests during high load

» Trips circuit-breakers to stop all requests to a particular service
(triggered e.g. when error percentage reaches threshold)

» Executes fall-back logic in case of failed requests etc.

-> Goal: Prevent failures or high latencies in individual services from cascading
to other parts of the system: Fail fast, degrade gracefully (if possible).

GetUserAccountCommand CreditCardCommand GetOrderGommand
19 19.0 % 19 5.0 % 21 0.0 %
00 0|0 00
1 0 0
Host: 2.1/s Host: 1.9/s Host: 2.1/s
Cluster: 2.1/8 cluster: 1.9/8 Cluster: 2.1/8
Circuit Closed Circuit Closed Circuit Closed
Hosts 1 90th 12ms Hosts 1 90th 1441ms Hosts 1 90th  242ms
Median 7ms 99th 51ms Median 1157ms 99th 3001ms Median 157ms 99th  449ms
Mean 9ms 99.5th 51ms Mean 1192ms 99.5th 3002ms Mean 164ms 99.5th 465ms

Source: https://github.com/Netflix/Hystrix
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Microservices — Patterns for Resilience and QoS
Circuit Breakers — Example: Netflix OSS — Hystrix

Hystrix Dashboard — Key Performance Indicators

circle color and size represent
health and traffic volume «

2 minutes of request rate to

show relative changes in traffic _. Hosts
_—  Median
r Mean

hosts repor‘iing from cluster

Error percentage of

Suhsﬂlhu-ﬁgumm / last 10 seconds

0%

200,545
0| 94

/‘ ' 0| _ Request rate

Host: 54.0/s ,/’f’f
' i
cluster: 20,056.0/s
Circuit Closed ~_

370 90th  10ms T Circuit-breaker
ims Q99th 44ms status
ams 995th  Gims

M
last minute latency percentiles

Rolling 10 second counters
with 1 second granularity

Successes 200,545 |

Short-circuited (rejected)

Thread timeouts
84 Thread-pool Rejections
0 Failures/Exceptions

Source: https://github.com/Netflix/Hystrix
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Microservices — Patterns for Resilience and QoS
Chaos Testing — Because Chaos is Closer to Reality

Problem:

On microservice level, code tests can identify potential failures and load tests can
point out scalability limitations, but neither tests the entire ecosystem.

-> Most production failures are related to issues elsewhere in the ecosystem.
ldea:

e Push microservices to fail in production:
Make it fail all of the time and in every way possible.

Run scheduled tests as well as random test:
Catch developers off guard as well as in prepared states of readiness.

Provide chaos testing as a service:
Dedicated team, no ad hoc cooperation across multiple teams.

Break every microservice and every piece of infrastructure (multiple times!).

Based on: [Fowler2017] e
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Microservices — Patterns for Resilience and QoS

Chaos Testing — Because Chaos is Closer to Reality

Example:

* Block individual APIs, stop single services, introduce network latency, break
entire hosts, disconnect entire regions or datacentres ...

- Even though it is called Chaos Testing, it has to be well controlled to prevent it

from bringing down the entire ecosystem or go rogue!

Datacentre
eu-westl

No connectivity
between Host 1
and Host 2

API of service
Aused by C is
unavailable

Interrupted by
occasional
timeouts

Service A is
down or not
responding

Datacentre
eu-west?2

A

Host 3
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Microservices — Patterns for Resilience and QoS
Canary Environments — The Last Stage before Full Release

Problem:

Even after passing all tests, actual production traffic may still cause unexpected
failure which may bring down the entire production environment.

ldea:
« Do not switch the entire production traffic over to the new version at once.

» Deploy new versions to a Canary Environment, which servers only about
5—10 % of the production traffic.

* Once the canary survived an entire traffic cycle (interval after which traffic
patterns repeat), deploy it to the entire production platform.

—> If a canary fails, only a small number of clients will be affected and the
deployment can be rolled back easily.

Based on: [Fowler2017] e
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Microservices — Patterns for Resilience and QoS
Canary Environments — The Last Stage before Full Release

Example:

* Rollout of a new version for service A to the canary environment

* New canary environment only serves a small portion of production traffic

Canary died (failed)

Production
Environment

AOD

—
—)

Production
Environment

A

Canary
Environment

A®D
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Microservices — Applications and Examples
Service Granularity — Software Company MGDIS SA

Cost-based definition of service granularity

Microservices

Maonolithic

Lambda

Cost of Quality AssuraN

Cost of deployment

Cost of deployment (no automation)

Source: [Gouigoux2017]
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Microservices — Applications and Examples
Case Study — Danske Bank

Foreign Exchange (forex, FX):

o : —

« Exchange of one currency for another ! _ﬂl A |
or the conversion of one currency into Fxtemal c"“"“ R
another currency. ‘

) DarE;chaank Markass

 Encompasses the conversion of — |
currencies at an airport k.iosk tg payj | Dansko |—-I . |
ments made by corporations, financial | Tl |
institutions and governments. . J “\— A N——

» Largest financial market in the world

Danske Bank FX System

« Mission critical system of the Danske Bank, implements FX

« Gateway between the international markets and the Danske Bank clients —

Source: [Dragoni2017]
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Microservices — Applications and Examples
Case Study — Danske Bank

Extemal Proviars

Problems with the FX System system:

 Large Components with little cohesion and
tight coupling

e Multiple communication and integration
paradigms (RPC, messaging)

 Complex and manual deployment

* No global monitoring and logging

« Technology dependencies (MS .NET) S,

- Great expense with respect to maintenance, quality assurance, and
deployment
ldea:
D

Migration of the FX system from a monolithic to a microservice architecture.

Source: [Dragoni2017]
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Microservices — Applications and Examples

Case Study — Danske Bank

Approach:

» Shift business logic in dedicated
services

PostgreSQL

* Provide “foundation services” for
system management tasks

e Y —
* Provide infrastructure services | Cassanga [ TechaSenies
~ i
e Use Docker and Docker Swarm Ljﬂ MonfloringSsrvice
. Icinga |
for deployment, load balancing, = | CoaagSenmce
and fail over D Ny
. | ElasticSearch
 Introduce Continuous .
Integration I
| Kibana

Source: [Dragoni2017]

- N /..— — External Provider APls ——_
Ix____ A - - -
|
|
|
L

ResponsibilityService
V) j— I —
AuthService

External Providers

T

LinecheckService
- |

AT T—

[_ RabbitQ | | TradingService Mainframe
N ~ _//, p— | i If---"'_"'*\
DataSyncService o [
DB2
S [ (Mainframa) |
- /
T“--—R o 1 FalloverService —

i U
B an
S~ ConfigurationServi —

onfigurationService PostgreSQL |I
J —
cAdvisor ‘

L
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Microservices — Technology Solutions

Spring cloud — Overview of an Ecosystem

Netflix Zuul

Edge Server .

Spring Boot
Data Flow Microservice
Stream Container

Task I
Micro Service N

Endpoint (@
Service Discovery

» Netflix Eureka
= Consul
—— ooy
Config
Cluster
2 | Sonvce Conurtion 8 Cordnaon
Consul
Zookeeper
Netflix Archaius
eted (incubating)

Source: : https://jaxenter.de/cloud-native-anwendungen-42976

Service Configuration & Coordination

In

Service Monitoring & Logg

g
spring

Netflix Feign
Netflix Ribbon
Netflix Hystrix

Sleuth
Hystrix Dashboard
Netflix Turbine
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Microservices — Technology Solutions

Netflix OSS — Overview of an Ecosystem
NETFLIX | OSS

Netflix has open-sourced a great number of their tools and services.

Some examples taken from their open-source ecosystem:

Runtime : Insight
Services & somaand  Reliability & Other Areas
Libraries y Performance

Atlas

Archaius Security

Nebula

Chaos Monkey User Interface

Eureka

Animator Edda Data Persistence

Hystrix

Spectator Content Encoding

Spinnaker

Zuul Vector

L
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https://netflix.github.io/

Microservices — Technology Solutions
Netflix OSS — Zuul: The Edge Service — Component Overview

r_______1

Resiliency/Monitoring B8 g\ (8D I

= == == == = el

= = == == = ey 1

Registry/Discovery Eureka I

— = == == " e

Monitoring Turbine I

Source: http://techblog.netflix.com/2013/06/announcing-zuul-edge-service-in-cloud.html
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Microservices — Technology Solutions
Netflix OSS — Zuul: The Edge Service

Zuul — The Gatekeeper

* Provides various filters to enable dynamic routing,
monitoring, resiliency and security.

» Uses a number of other services to perform
certain tasks, e.g.:

* Hystrix — Real time metrics and resilience

Source: Ghost Busters (Columbia Pictures 1984)

 Ribbon — Routing and load balancing
 Eureka — Service and instance location
 Turbine — Server-Sent Event (SSE) stream aggregation

 Archaius — Thread-safe configuration management

Source: http://techblog.netflix.com/2013/06/announcing-zuul-edge-service-in-cloud.html
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Microservices — Technology Solutions
Netflix OSS — Ribbon: Routing and Load Balancing

Ribbon — The rule based load balancer

» Zone-based load balancing in the cloud (avoids cross zone traffic)

Capable of dynamically discovering services in its zone (using Eureka)

Filters servers based on:

* Availability — determined via ping interface

 Broken Circuits — provided by Hystrix

Dynamic configuration for load balancers via Archaius

Commonly used balancing rules:
 Round Robin — default or fallback for more complex rules
« Availability Filtering — uses tripped (broken) circuits

 Weighted Response Time — longer response time, less weight in selection

Source: https://github.com/Netflix/ribbon/wiki/Features
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Microservices — Technology Solutions
Netflix OSS — Eureka: Service and Instance Discovery

Eureka — The Service Registry
» Used to locate services in an AWS cloud environment
» Additional load balancing and failover mechanism for middle-tier servers

« Automated service removal via registration renewal heartbeat

@—east—lc us-east-1d (‘us—east—le \
Zone registry
Register, [
ggﬂ:g:““" renew | Eureka Server Eureka Server Eureka Server and services
ceree :Re :|Iicat: Eepl cat;
Eureka
Cllent Giet
HP- \P_
1= o
EM@ E E .
roocat R - Inter zone
. . pplication pplication
Region cluster with Client Client = lookups and
zone instances Eurea irhed remote calls

Source: https://github.com/Netflix/eureka/wiki/Eureka-at-a-glance

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel


https://github.com/Netflix/eureka/wiki/Eureka-at-a-glance

Agenda

Chapter 1 Introduction
Chapter 2 Architectural Tasks and Challenges
Chapter 3 Patterns for Resilience and QoS

Chapter 4 Applications and Examples

Chapter 5 Technology Solutions

Chapter 6 Summary and Conclusions

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel



Microservices — Summary and Conclusions

 The microservices paradigm is a new promising approach in
provisioning software:

« Small services, self-contained, high cohesion and loose coupling
* Runs in a separate process
 Maybe deployed and scaled independently from each other
« Owned by a single team — “You build it, you run it”
« Continuous integration — continuous delivery (CICD)
« Efficient OSS frameworks for development & delivery are available
» Spring Boot / Cloud, Netflix OSS, Docker Swarm, Kubernetes, ...
 BUT: High frequency of change

 Some success stories: Amazon, Netflix, Google, Danske Bank, Otto ...

* |s the microservices paradigm just a hype — or is it the silver bullet
which will solve all our problems in the software industry?
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