HOCHSCHULE
HANNOVER
UNIVERSITY OF
APPLIED SCIENCES
AND ARTS

Fakultdt 1V

Wirtschaft und
Informatik

Service Computation 2018
February 18 — 22, 2018

Keynote Speech on

Microservices
— A modern, agile approach to SOA —

Andreas Hausotter
University of Applied Sciences and Arts, Hannover
Faculty of Business and Computer Science

Agenda

Chapter 1 Introduction

Chapter 2 Architectural Tasks and Challenges

Chapter 3 Patterns for Resilience and QoS
Chapter 4 Applications and Examples
Chapter 5 Technology Solutions

Chapter 6 Summary and Conclusions

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel

N

Microservices — Introduction
Motivation — A common scenario for a web application

Online shop system with basic functionalities:

« Search for products (e.g. by name and/or category),
» view product details (including pictures etc.),
» purchase products (place in basket, proceed to checkout) and

» submit and view product reviews.

Typical Requirements:

* Interoperability: Support a variety of different clients
(web browser, mobile applications etc.)

* Maintainability: Enable frequent and rapid changes
« Scalability: Handle sudden increases in user activity

« Availability: Minimise downtime (= financial loss)

-> Traditional Approach: Monolithic Architecture

w

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel

Microservices — Introduction
Monolithic Architecture — The traditional approach to web applications

Properties:

» Single process

* Single database

Process

Advantages:

Monolith » Easy development
(for example, communication via

—
- simple method calls)
» Easy deployment
(deployment of a single artefact)

» Application as a whole is scalable
(via load balancer)

N

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel

Microservices — Introduction

Process

Monolithic Architecture — Challenges

Monolith

.

=
- :
i/

—*| Shared
Database

Scenario: The shop is very successful and the project grows steadily
* Number of components and LOC increases as more features are added

* More project members are required for development, QA, design etc.

Challenges:

« Communication overhead between project members
» Decrease in development speed due to increased complexity

* Deployments (and updates) become less frequent

-> Idea: Limit responsibilities of individual project members to

individual components instead of entire monolith
(e.g. by creating smaller teams).

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel

[¢)]

Microservices — Introduction
Microservice Architecture — Decomposing the Monolith

Concept: Decompose complex applications into smaller units
(usually single tasks or even subtasks)

Properties of a Microservice:

« Self-contained unit providing its on persistence layer etc.
 May be deployed to an arbitrary number of processes

» Clearly defined scope of responsibility (loose coupling; high cohesion)

« Owned by a single team

: : | Process
(responsible for development [and operation])

Process

| Microservice
\ Microservice B
A ﬁ
|
@ Process

Microservice

-> Motto: “You build it, you run it!”

‘HE

C

|
|
| O]
| Microservice Application

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel

Vorführender
Präsentationsnotizen
Operation of a service container is not necessarily done by the team, depending on the scale of the environment. Bigger companies and more complex service architectures will still require a dedicated team for operations, which will only receive a container from the service team and take over operations from that point on.

Microservices — Introduction
Microservice Architecture — What is the difference to a SOA?

Microservices are considered a specialisation of SOA.

» All microservice architectures are also service-oriented architectures.
* Microservices introduce additional constraints to SOA:
» All services must be deployable independent from one another.
 Size and domain of a microservice are limited (no limitations in SOA).
* Every service runs in its own process and contains its own storage.
* No need for an ESB, services handle communication individually.

A SOA can be comprised of or integrate with multiple microservices.

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel

~

Process : ;
[- - Microservice
\ Microservice B
A

|
@ Process
>

|
|
|
|
Microservice |
|
|
|

Microservices — Introduction
Microservice Architecture — Advantages

L B |

C

|
|
| O
| Microservice Application |

« Each microservice can be deployed and scaled independently

Advantages:

« Ownership by a single, small team (developer, designer, [administrator] ...)
reduces communication overhead among project members

 Small size & limited scope allow for easy replacement of individual services

* Rapid development lifecycle promotes continuous integration

-> But: These advantages can quickly turn into challenges!

Consequence:

Microservices require strict adherence of developers to guidelines
provided by architects to prevent introduction of dependencies.

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel

[ee]

Agenda

Chapter 1 Introduction

Chapter 2 Architectural Tasks and Challenges

Decomposition
Deployment
Technology Heterogeneity
Scalability
Communication between Microservices
Monitoring
Chapter 3 Patterns for Resilience and QoS
Chapter 4 Applications and Examples
Chapter 5 Technology Solutions

Chapter 6 Summary and Conclusions

©

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel

Microservices — Tasks and Challenges
Decomposition — The art of dividing and decoupling

Problem with Monoliths:

» Refactoring is necessary to conform to initial architectural vision

Benefit of Microservices:

« Small enough to replace entire service in case of major changes

» Keeps code rot in check due do limited number of LOC per service

Challenges:

« Small enough, but not too small
Choosing the correct size for a microservice is important to prevent the
overhead from outweighing the benefit.

 Durable Interfaces
Replacements should not introduce changes to provided interfaces as
this would incur additional changes in other services.

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel

Agenda

Chapter 1 Introduction

Chapter 2 Architectural Tasks and Challenges

Decomposition
Deployment
Technology Heterogeneity
Scalability
Communication between Microservices
Monitoring
Chapter 3 Patterns for Resilience and QoS
Chapter 4 Applications and Examples
Chapter 5 Technology Solutions

Chapter 6 Summary and Conclusions

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel 11

Microservices — Tasks and Challenges
Deployment — What is deployed when and how frequently?

Problem with Monoliths: Fixed deployment cycles which may lengthen over time

Benefit of Microservices:

* No fixed deployment schedule (e.g. once per month or quarter)
« Teams may deploy frequently and independently from one another

* New features and changes can be shipped more rapidly

Challenges:

 Loose Coupling: A change in one microservice should not
(or in practice very rarely) require a change in another microservice.

« Availability and Continuous Integration (Cl): There must always be a fully
tested version available to all other services, while the diversity of deployed
versions should be kept low.

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel

Agenda

Chapter 1 Introduction

Chapter 2 Architectural Tasks and Challenges

Decomposition
Deployment
Technology Heterogeneity
Scalability
Communication between Microservices
Monitoring
Chapter 3 Patterns for Resilience and QoS
Chapter 4 Applications and Examples
Chapter 5 Technology Solutions

Chapter 6 Summary and Conclusions

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel 13

Microservices — Tasks and Challenges
Technology Heterogeneity — Advantages and Challenges

Advantages of Microservices:
« Every services appears as a black box to other services.
 Teams can always use the “best tool for the job” within their own service.

(e.g. data storage paradigm, programming language, libraries, build chain)

Challenges:

« Overall complexity increases (e.g. licensing, architecture overview)
 Employees cannot easily be reassigned between teams (missing expertise)

« “Bus factor”: Can development on a microservice continue when a
developer leaves the company?

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel

Microservices — Tasks and Challenges
Technology Heterogeneity — Advantages and Challenges

Examples

Different microservices may use fundamentally different technology stacks.

O A

o :
u} :

ava | @)
J N ‘@d g S server

J mongo 5. | B Microsoft

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel 15

Agenda

Chapter 1 Introduction

Chapter 2 Architectural Tasks and Challenges

Decomposition
Deployment
Technology Heterogeneity
Scalability
Communication between Microservices
Monitoring
Chapter 3 Patterns for Resilience and QoS
Chapter 4 Applications and Examples
Chapter 5 Technology Solutions

Chapter 6 Summary and Conclusions

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel 16

Microservices — Tasks and Challenges
Scalability — Independence vs. communication overhead

Advantages of Microservices:
« Each service runs in a process of its own and provides its own storage.
- Microservices can be scaled independently from each other.

« Modularity allows easy deployment of additional service instances.

Challenges:

« Services must be able to scale vertically as well as horizontally.

» Every instance must be able to answer a request, potentially introducing
communication overhead between instances.

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel

Microservices — Tasks and Challenges
Scalablility — Independence vs. communication / syncronization overhead

Scenario 1:

» All services are provided with an
equal amount of resources.

Scenario 2:

* B and C continue to share resources.

» As provided with dedicated resources.

Scenario 3:

e B and C continue to share resources.

e Additional instances of A and C are
created with dedicated resources.

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel 18

Agenda

Chapter 1 Introduction

Chapter 2 Architectural Tasks and Challenges

Decomposition
Deployment
Technology Heterogeneity
Scalability
Client-Server Integration
Communication between Microservices
Monitoring
Chapter 3 Patterns for Resilience and QoS
Chapter 4 Applications and Examples

Chapter 5 Technology Solutions

Chapter 6 Summary and Conclusions

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel 19

Microservices — Tasks and Challenges
Communication between Microservices — Patterns and Models

Advantages of Microservices:

« Direct communication between services lifts the requirement for a centralised
enterprise service bus.

* Inter-service communication patterns can be chosen as needed.

Challenges:

« Communication between services becomes more complex:
* Will cross process and potentially even data center boundaries,
« can no longer be handled via method calls (monolith) and
* requires (potentially expensive) inter-process communication.

* Interfaces should not be too fine-grained to reduce overhead.

e Calls to other services can not be considered instantaneous and must be
handled in a non-blocking manner.

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel

Microservices — Tasks and Challenges
Communication between Microservices — Patterns and Models

Examples of Communication Patterns:
« Request Response
 Immediate answer (e.g. via HTTP using a RESTful API)
« Simple, direct and intuitive, but potentially blocking.

* Requires polling if service A wants to keep track of the state of B

~—— 1.Request = T—_
Service Service
Provider Consumer
™~ 2.Response
[

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel 21

Microservices — Tasks and Challenges
Communication between Microservices — Patterns and Models

Examples of Communication Patterns:

 Publish Subscribe (Event-based communication)
» Spatial Decoupling: Arbitrary number of publishers and subscribers
 Temporal Decoupling: Messages may be delivered at any time
o Subscribers are automatically notified on new messages

* Asynchrony may increase complexity

1. Subscribe
Publisher Subscriber
/ 3. Publish
w‘ 4. Notify
2. External Subscribers
Request []

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel 22

Microservices — Tasks and Challenges
Communication — Request Response vs. Event-Based

Event
* LA (sudden) occurrence”

0. Widder. (2013). geek&poke. Available: http:

Request - Response

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel 23

Agenda

Chapter 1 Introduction

Chapter 2 Architectural Tasks and Challenges

Decomposition
Deployment
Technology Heterogeneity
Scalability
Client-Server Integration
Communication between Microservices
Monitoring
Chapter 3 Patterns for Resilience and QoS
Chapter 4 Applications and Examples

Chapter 5 Technology Solutions

Chapter 4 Summary and Conclusions

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel 24

Microservices — Tasks and Challenges
Monitoring — Keeping Track of Key Metrics

Advantages of Microservices:
» Replaceability and small scope of individual services allows for quick
reactions and precise localisation of issues.

Challenges:

» Distributed logs etc. need to be collected and aggregated

« Events pertaining to the same, initiating request need to be correlated
across all APIs to trace back downstream errors (e.g. using a shared request id).

* Must keep track of various metrics and key performance indicators (KPI)
o System Level: CPU load, memory consumption, I/O operations, ...
 Application Level: Response times, error rates, ...

» Reliable and fail-safe: Monitoring blackouts are a worst-case scenario, as
there is no way to tell, how the entire system behaves during that time.

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel

Agenda

Chapter 1 Introduction

Chapter 2 Architectural Tasks and Challenges

Chapter 3 Patterns for Resilience and QoS

Circuit Breakers

Chaos Testing

Canary Environments
Chapter 4 Applications and Examples
Chapter 5 Technology Solutions

Chapter 6 Summary and Conclusions

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel

Microservices — Patterns for Resilience and QoS
Circuit Breakers — Preventing Failures from Cascading

Problem:

Performance issues of a downstream service can impact upstream services.
ldea:

» Monitor services to detect issues and potential failure as early as possible

* Provide fail-fast or fall back mechanism to prevent upstream cascades

Service boundary Service boundary Service boundary Service boundary

Calling Calling Calling Calling

Code Calling Code Calling Code Calling Code Calling
Code (Code Code Code

Reset
broken
circuit

Calls start Requests Check for
failing or IEURER recovery

’ Down- Down- Down- Down-
time out

stream stream stream stream

Service Service Service Service

of service

Based on: [Newman2015]

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel 27

Microservices — Patterns for Resilience and QoS
Circuit Breakers — Example: Netflix OSS — Hystrix

Hystrix — An OSS resilience solution for microservices
* Wraps calls to dependencies to track successes, failures, timeouts, ...
* Provides a fail fast mechanism to prevent blocking requests during high load

» Trips circuit-breakers to stop all requests to a particular service
(triggered e.g. when error percentage reaches threshold)

» Executes fall-back logic in case of failed requests etc.

-> Goal: Prevent failures or high latencies in individual services from cascading
to other parts of the system: Fail fast, degrade gracefully (if possible).

GetUserAccountCommand CreditCardCommand GetOrderGommand
19 19.0 % 19 5.0 % 21 0.0 %
00 0|0 00
1 0 0
Host: 2.1/s Host: 1.9/s Host: 2.1/s
Cluster: 2.1/8 cluster: 1.9/8 Cluster: 2.1/8
Circuit Closed Circuit Closed Circuit Closed
Hosts 1 90th 12ms Hosts 1 90th 1441ms Hosts 1 90th 242ms
Median 7ms 99th 51ms Median 1157ms 99th 3001ms Median 157ms 99th 449ms
Mean 9ms 99.5th 51ms Mean 1192ms 99.5th 3002ms Mean 164ms 99.5th 465ms

Source: https://github.com/Netflix/Hystrix

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel 28

https://github.com/Netflix/Hystrix

Microservices — Patterns for Resilience and QoS
Circuit Breakers — Example: Netflix OSS — Hystrix

Hystrix Dashboard — Key Performance Indicators

circle color and size represent
health and traffic volume «

2 minutes of request rate to

show relative changes in traffic _. Hosts
_— Median
r Mean

hosts repor‘iing from cluster

Error percentage of

Suhsﬂlhu-ﬁgumm / last 10 seconds

0%

200,545
0| 94

/‘ ' 0| _ Request rate

Host: 54.0/s ,/’f’f
' i
cluster: 20,056.0/s
Circuit Closed ~_

370 90th 10ms T Circuit-breaker
ims Q99th 44ms status
ams 995th Gims

M
last minute latency percentiles

Rolling 10 second counters
with 1 second granularity

Successes 200,545 |

Short-circuited (rejected)

Thread timeouts
84 Thread-pool Rejections
0 Failures/Exceptions

Source: https://github.com/Netflix/Hystrix

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel

https://github.com/Netflix/Hystrix

Agenda

Chapter 1 Introduction

Chapter 2 Architectural Tasks and Challenges

Chapter 3 Patterns for Resilience and QoS

Circuit Breakers

Chaos Testing

Canary Environments
Chapter 4 Applications and Examples
Chapter 5 Technology Solutions

Chapter 6 Summary and Conclusions

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel

Microservices — Patterns for Resilience and QoS
Chaos Testing — Because Chaos is Closer to Reality

Problem:

On microservice level, code tests can identify potential failures and load tests can
point out scalability limitations, but neither tests the entire ecosystem.

-> Most production failures are related to issues elsewhere in the ecosystem.
ldea:

e Push microservices to fail in production:
Make it fail all of the time and in every way possible.

Run scheduled tests as well as random test:
Catch developers off guard as well as in prepared states of readiness.

Provide chaos testing as a service:
Dedicated team, no ad hoc cooperation across multiple teams.

Break every microservice and every piece of infrastructure (multiple times!).

Based on: [Fowler2017] e

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel 31

Microservices — Patterns for Resilience and QoS

Chaos Testing — Because Chaos is Closer to Reality

Example:

* Block individual APIs, stop single services, introduce network latency, break
entire hosts, disconnect entire regions or datacentres ...

- Even though it is called Chaos Testing, it has to be well controlled to prevent it

from bringing down the entire ecosystem or go rogue!

Datacentre
eu-westl

No connectivity
between Host 1
and Host 2

API of service
Aused by C is
unavailable

Interrupted by
occasional
timeouts

Service A is
down or not
responding

Datacentre
eu-west?2

A

Host 3

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel

Agenda

Chapter 1 Introduction

Chapter 2 Architectural Tasks and Challenges

Chapter 3 Patterns for Resilience and QoS

Circuit Breakers

Chaos Testing

Canary Environments
Chapter 3 Applications and Examples
Chapter 5 Technology Solutions

Chapter 6 Summary and Conclusions

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel

Microservices — Patterns for Resilience and QoS
Canary Environments — The Last Stage before Full Release

Problem:

Even after passing all tests, actual production traffic may still cause unexpected
failure which may bring down the entire production environment.

ldea:
« Do not switch the entire production traffic over to the new version at once.

» Deploy new versions to a Canary Environment, which servers only about
5—10 % of the production traffic.

* Once the canary survived an entire traffic cycle (interval after which traffic
patterns repeat), deploy it to the entire production platform.

—> If a canary fails, only a small number of clients will be affected and the
deployment can be rolled back easily.

Based on: [Fowler2017] e

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel 34

Microservices — Patterns for Resilience and QoS
Canary Environments — The Last Stage before Full Release

Example:

* Rollout of a new version for service A to the canary environment

* New canary environment only serves a small portion of production traffic

Canary died (failed)

Production
Environment

AOD

—
—)

Production
Environment

A

Canary
Environment

A®D

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel

Canary survived

—

Production
Environment

AR

-+ B

Agenda

Chapter 1 Introduction
Chapter 2 Architectural Tasks and Challenges

Chapter 3 Patterns for Resilience and QoS

Chapter 4 Applications and Examples

Service Granularity

Case Study
Chapter 5 Technology Solutions

Chapter 6 Summary and Conclusions

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel

Microservices — Applications and Examples
Service Granularity — Software Company MGDIS SA

Cost-based definition of service granularity

Microservices

Maonolithic

Lambda

Cost of Quality AssuraN

Cost of deployment

Cost of deployment (no automation)

Source: [Gouigoux2017]

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel

Agenda

Chapter 1 Introduction
Chapter 2 Architectural Tasks and Challenges

Chapter 3 Patterns for Resilience and QoS

Chapter 4 Applications and Examples

Service Granularity

Case Study
Chapter 5 Technology Solutions

Chapter 6 Summary and Conclusions

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel

Microservices — Applications and Examples
Case Study — Danske Bank

Foreign Exchange (forex, FX):

o : —

« Exchange of one currency for another ! _ﬂl A |
or the conversion of one currency into Fxtemal c"“"“ R
another currency. ‘

) DarE;chaank Markass

 Encompasses the conversion of — |
currencies at an airport k.iosk tg payj | Dansko |—-I . |
ments made by corporations, financial | Tl |
institutions and governments. . J “\— A N——

» Largest financial market in the world

Danske Bank FX System

« Mission critical system of the Danske Bank, implements FX

« Gateway between the international markets and the Danske Bank clients —

Source: [Dragoni2017]

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel 39

Microservices — Applications and Examples
Case Study — Danske Bank

Extemal Proviars

Problems with the FX System system:

 Large Components with little cohesion and
tight coupling

e Multiple communication and integration
paradigms (RPC, messaging)

 Complex and manual deployment

* No global monitoring and logging

« Technology dependencies (MS .NET) S,

- Great expense with respect to maintenance, quality assurance, and
deployment
ldea:
D

Migration of the FX system from a monolithic to a microservice architecture.

Source: [Dragoni2017]

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel 40

Microservices — Applications and Examples

Case Study — Danske Bank

Approach:

» Shift business logic in dedicated
services

PostgreSQL

* Provide “foundation services” for
system management tasks

e Y —
* Provide infrastructure services | Cassanga [TechaSenies
~ i
e Use Docker and Docker Swarm Ljﬂ MonfloringSsrvice
. Icinga |
for deployment, load balancing, = | CoaagSenmce
and fail over D Ny
. | ElasticSearch
 Introduce Continuous .
Integration I
| Kibana

Source: [Dragoni2017]

- N /..— — External Provider APls ——_
Ix____ A - - -
|
|
|
L

ResponsibilityService
V) j— I —
AuthService

External Providers

T

LinecheckService
- |

AT T—

[_ RabbitQ | | TradingService Mainframe
N ~ _//, p— | i If---"'_"'*\
DataSyncService o [
DB2
S [(Mainframa) |
- /
T“--—R o 1 FalloverService —

i U
B an
S~ ConfigurationServi —

onfigurationService PostgreSQL |I
J —
cAdvisor ‘

L

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel

41

Agenda

Chapter 1 Introduction
Chapter 2 Architectural Tasks and Challenges

Chapter 3 Patterns for Resilience and QoS

Chapter 4 Applications and Examples

Chapter 5 Technology Solutions

Spring Cloud
Netflix OSS

Chapter 6 Summary and Conclusions

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel

Microservices — Technology Solutions

Spring cloud — Overview of an Ecosystem

Netflix Zuul

Edge Server .

Spring Boot
Data Flow Microservice
Stream Container

Task I
Micro Service N

Endpoint (@
Service Discovery

» Netflix Eureka
= Consul
—— ooy
Config
Cluster
2 | Sonvce Conurtion 8 Cordnaon
Consul
Zookeeper
Netflix Archaius
eted (incubating)

Source: : https://jaxenter.de/cloud-native-anwendungen-42976

Service Configuration & Coordination

In

Service Monitoring & Logg

g
spring

Netflix Feign
Netflix Ribbon
Netflix Hystrix

Sleuth
Hystrix Dashboard
Netflix Turbine

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel

Agenda

Chapter 1 Introduction
Chapter 2 Architectural Tasks and Challenges

Chapter 3 Patterns for Resilience and QoS

Chapter 4 Applications and Examples

Chapter 5 Technology Solutions

Spring Boot
Netflix OSS

Chapter 6 Summary and Conclusions

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel

Microservices — Technology Solutions

Netflix OSS — Overview of an Ecosystem
NETFLIX | OSS

Netflix has open-sourced a great number of their tools and services.

Some examples taken from their open-source ecosystem:

Runtime : Insight
Services & somaand Reliability & Other Areas
Libraries y Performance

Atlas

Archaius Security

Nebula

Chaos Monkey User Interface

Eureka

Animator Edda Data Persistence

Hystrix

Spectator Content Encoding

Spinnaker

Zuul Vector

L

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel 45

Source: https://netflix.github.io

https://netflix.github.io/

Microservices — Technology Solutions
Netflix OSS — Zuul: The Edge Service — Component Overview

r_______1

Resiliency/Monitoring B8 g\ (8D I

= == == == = el

= = == == = ey 1

Registry/Discovery Eureka I

— = == == " e

Monitoring Turbine I

Source: http://techblog.netflix.com/2013/06/announcing-zuul-edge-service-in-cloud.html

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel

Microservices — Technology Solutions
Netflix OSS — Zuul: The Edge Service

Zuul — The Gatekeeper

* Provides various filters to enable dynamic routing,
monitoring, resiliency and security.

» Uses a number of other services to perform
certain tasks, e.g.:

* Hystrix — Real time metrics and resilience

Source: Ghost Busters (Columbia Pictures 1984)

 Ribbon — Routing and load balancing
 Eureka — Service and instance location
 Turbine — Server-Sent Event (SSE) stream aggregation

 Archaius — Thread-safe configuration management

Source: http://techblog.netflix.com/2013/06/announcing-zuul-edge-service-in-cloud.html

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel 47

Microservices — Technology Solutions
Netflix OSS — Ribbon: Routing and Load Balancing

Ribbon — The rule based load balancer

» Zone-based load balancing in the cloud (avoids cross zone traffic)

Capable of dynamically discovering services in its zone (using Eureka)

Filters servers based on:

* Availability — determined via ping interface

 Broken Circuits — provided by Hystrix

Dynamic configuration for load balancers via Archaius

Commonly used balancing rules:
 Round Robin — default or fallback for more complex rules
« Availability Filtering — uses tripped (broken) circuits

 Weighted Response Time — longer response time, less weight in selection

Source: https://github.com/Netflix/ribbon/wiki/Features

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel 48

https://github.com/Netflix/ribbon/wiki/Features

Microservices — Technology Solutions
Netflix OSS — Eureka: Service and Instance Discovery

Eureka — The Service Registry
» Used to locate services in an AWS cloud environment
» Additional load balancing and failover mechanism for middle-tier servers

« Automated service removal via registration renewal heartbeat

@—east—lc us-east-1d (‘us—east—le \
Zone registry
Register, [
ggﬂ:g:““" renew | Eureka Server Eureka Server Eureka Server and services
ceree :Re :|Iicat: Eepl cat;
Eureka
Cllent Giet
HP- \P_
1= o
EM@ E E .
roocat R - Inter zone
. . pplication pplication
Region cluster with Client Client = lookups and
zone instances Eurea irhed remote calls

Source: https://github.com/Netflix/eureka/wiki/Eureka-at-a-glance

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel

https://github.com/Netflix/eureka/wiki/Eureka-at-a-glance

Agenda

Chapter 1 Introduction
Chapter 2 Architectural Tasks and Challenges
Chapter 3 Patterns for Resilience and QoS

Chapter 4 Applications and Examples

Chapter 5 Technology Solutions

Chapter 6 Summary and Conclusions

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel

Microservices — Summary and Conclusions

 The microservices paradigm is a new promising approach in
provisioning software:

« Small services, self-contained, high cohesion and loose coupling
* Runs in a separate process
 Maybe deployed and scaled independently from each other
« Owned by a single team — “You build it, you run it”
« Continuous integration — continuous delivery (CICD)
« Efficient OSS frameworks for development & delivery are available
» Spring Boot / Cloud, Netflix OSS, Docker Swarm, Kubernetes, ...
 BUT: High frequency of change

 Some success stories: Amazon, Netflix, Google, Danske Bank, Otto ...

* |s the microservices paradigm just a hype — or is it the silver bullet
which will solve all our problems in the software industry?

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel

References & Additional Reading

[Brooks1995]

[Dragoni2017]

[Eugster2003]

[Fowler2016]

[Gouigoux2017]

[Newman2015]

[Thones2016]
[Wolff2016]

F. Brooks, Jr, The mythical man-month: essays on software engineering. Addison-
Wesley, 1995

N. Dragoni, S. Dustdar, S. Larsen, M. Mazzara, “Microservices: Migration of a
mission critical system”, arXiv preprint, 2017

P. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec, “The many faces of
publish/subscribe”, in ACM Computing Surveys, vol. 35, no. 2, June 2003, pp.
114-131

S. J. Fowler, “Production-Ready Microservices — Building Standardized Systems
Across an Engineering Organization”, Sebastopol, CA, O'Reilly 2016

J. P. Gouigoux, D. Tamzalit, ,From monolith to microservices®, in: IEEE
International Conference on Software Architecture Workshops, 2017

S. Newman, “Building Microservices — Designing Fine-Grained Systems”,
Sebastopol, CA, O'Reilly, 2015 l I

J. Thones, “Microservices”, IEEE Software, January/February 2015

E. Wolff, “Microservices — Grundlagen flexibler Softwarearchitekturen”, '
Heidelberg, dpunkt.verlag, 2016

University of Applied Sciences and Arts, Hannover — Department of Computer Science — A. Koschel

	Keynote Speech on�Microservices�– A modern, agile approach to SOA –�
	Agenda
	Microservices – Introduction�Motivation – A common scenario for a web application
	Microservices – Introduction�Monolithic Architecture – The traditional approach to web applications
	Microservices – Introduction�Monolithic Architecture – Challenges
	Microservices – Introduction�Microservice Architecture – Decomposing the Monolith
	Microservices – Introduction�Microservice Architecture – What is the difference to a SOA?
	Microservices – Introduction�Microservice Architecture – Advantages
	Agenda
	Microservices – Tasks and Challenges�Decomposition – The art of dividing and decoupling
	Agenda
	Microservices – Tasks and Challenges�Deployment – What is deployed when and how frequently?
	Agenda
	Microservices – Tasks and Challenges�Technology Heterogeneity – Advantages and Challenges
	Microservices – Tasks and Challenges�Technology Heterogeneity – Advantages and Challenges
	Agenda
	Microservices – Tasks and Challenges�Scalability – Independence vs. communication overhead
	Microservices – Tasks and Challenges�Scalability – Independence vs. communication / syncronization overhead
	Agenda
	Microservices – Tasks and Challenges�Communication between Microservices – Patterns and Models
	Microservices – Tasks and Challenges�Communication between Microservices – Patterns and Models
	Microservices – Tasks and Challenges�Communication between Microservices – Patterns and Models
	Microservices – Tasks and Challenges�Communication – Request Response vs. Event-Based
	Agenda
	Microservices – Tasks and Challenges�Monitoring – Keeping Track of Key Metrics
	Agenda
	Microservices – Patterns for Resilience and QoS�Circuit Breakers – Preventing Failures from Cascading
	Microservices – Patterns for Resilience and QoS�Circuit Breakers – Example: Netflix OSS – Hystrix
	Microservices – Patterns for Resilience and QoS�Circuit Breakers – Example: Netflix OSS – Hystrix
	Agenda
	Microservices – Patterns for Resilience and QoS�Chaos Testing – Because Chaos is Closer to Reality
	Microservices – Patterns for Resilience and QoS�Chaos Testing – Because Chaos is Closer to Reality
	Agenda
	Microservices – Patterns for Resilience and QoS�Canary Environments – The Last Stage before Full Release
	Microservices – Patterns for Resilience and QoS�Canary Environments – The Last Stage before Full Release
	Agenda
	Microservices – Applications and Examples�Service Granularity – Software Company MGDIS SA
	Agenda
	Microservices – Applications and Examples�Case Study – Danske Bank
	Microservices – Applications and Examples�Case Study – Danske Bank
	Microservices – Applications and Examples�Case Study – Danske Bank
	Agenda
	Microservices – Technology Solutions�Spring cloud – Overview of an Ecosystem
	Agenda
	Microservices – Technology Solutions�Netflix OSS – Overview of an Ecosystem
	Microservices – Technology Solutions�Netflix OSS – Zuul: The Edge Service – Component Overview
	Microservices – Technology Solutions�Netflix OSS – Zuul: The Edge Service
	Microservices – Technology Solutions�Netflix OSS – Ribbon: Routing and Load Balancing
	Microservices – Technology Solutions�Netflix OSS – Eureka: Service and Instance Discovery
	Agenda
	Microservices – Summary and Conclusions
	References & Additional Reading

