

Security as a **Game**

Decisions under uncertainty in risk management

Stefan Rass

Associate Professor @ Alpen-Adria Universität Klagenfurt Institute of Applied Informatics – System Security stefan.rass@aau.at

Keynote @ NetWare 2018

Motivation 1

- IT security often a dilemma
 - Ideal case: Security mechanisms work transparently (unnoticed)
 - Worst Case: noticeable damage due to absence or failure of security measures

In any case: only damage is perceived, no "noticeable" benefit

Security is like an immune system (and just as important)

- This raises a variety of problems/questions:
 - "Why more safety? Everything's going well right now!"
 - "The majority of our experts are of the opinion that we have no problem. So why do we need more security than we already have?"
 - "This problem is so unlikely, we don't need to worry about it!"

- ...

Motivation 2

Advanced Persistent Threats

- Characteristics
 - targeted
 - unnoticed
 - slowly and over a long period (weeks... months)
 - specific ("tailor-made" malware)
 - too late to avert damage if symptoms become visible
- Procedure (model)
 - 1. initial infection (phishing, dropper, social engineering,...)
 - 2. propagation (scanning \circlearrowright penetration)
 - 3. damage

Source: https://blog.mailfence.com

... like a disease ↓ infection incubation outbreak

Cybercrime-as-a-Service

- Cyber-Crime-as-a-Service: A service (almost) as any other (...only illegal)
- ...and quite affordable...

Source: https://securityintelligence.com/cybercrime-ecosystem-everything-is-for-sale/

IT-Security

The disease: APTs... (dark count?)

The immune system

Source: http://www.techeconomy.it/

IT Security IT Risk Management

... only why go to the doctor as long as you're healthy?

• Player 1: Security Risk Manager

- Player 2: Attacker (partially unknown)
- Game: Risk minimization through "appropriate" management of the company

 Risk management = "best possible" controlling to minimize damage

- Example: Rock-Paper-Scissors
 - 2 players: player 1 chooses column, player 2 chooses row
 - 3 strategies per player
 - Outcome: +1 = player 1 wins, -1 = player 1 looses, 0 = draw

	Rock	Scissors	Paper
Rock	0	1	-1
Scissors	-1	0	1
Paper	1	-1	0

• Optimal strategy (for player 1)?

- Example: Rock-Paper-Scissors
 - 2 players: player 1 chooses column, player 2 chooses row
 - 3 strategies per player
 - Outcome: +1 = player 1 wins, -1 = player 1 looses, 0 = draw

	Rock	Scissors	Paper
Rock	0	1	-1 🛞
Scissors	-1	0	1
Paper	1	-1	0

 Optimal strategy (for player 1)? Always play "rock"? → player 2 always replies with "paper" → player 1 loses constantly!

- Example: Rock-Paper-Scissors
 - 2 players: player 1 chooses column, player 2 chooses row
 - 3 strategies per player
 - Outcome: +1 = player 1 wins, -1 = player 1 looses, 0 = draw

		Rock	Scissors	Paper
	Rock	0	1	-1
prob. 1/3-	Scissors	-1	0	1
	Paper	1	-1	0

probability 1/3

Optimal strategy (for player 1)? Take all three actions equiprobable (same for player 2) → Nash equilibrium (in mixed strategies = moving target defense)

- The "Battle-of-the-Sexes"
 - He: ...wants to watch soccer
 - She: ...wants to go to the opera
- He: ...rates soccer as +3, opera as +1
- She: ...rates soccer as +1, opera as +3

 Optimal behavior (= Nash equilibrium): Best possible/fair compromise for both sides

- ...quasi as "Rock-Paper-Scissors": Defender vs. Attacker
- ... only on the basis of damage scenarios & countermeasures

• Optimal security is "predictable" (Nash equilibrium), regardless of the actual behavior of the opponent

- Restriction to:
 - Current defense policy (actual state)
 - Known/relevant threats

Г	Identificati	ion of the "greate	est" threat
	Threat X	Threat Y	Threat Z
currently		\uparrow	

• Solution of the game: ... delivers the greatest threat

- Restriction to:
 - A fixed threat
 - Candidate countermeasures (target status) with permanent effect

• Solution of the game: ...provides the optimal countermeasure

- Combination:
 - Multiple threats
 - Multiple countermeasures (without permanent effect \rightarrow repetition required*)

e.g., awareness training, ...

 Solution of the game: optimal resource allocation for minimal risk under (all) worstcase scenarios

* "security is never done"

Positioning in the overall process

e.g., ISO 31000

- One of the best-known risk management models
- Best Practice
- Problems (in general)
 - awareness
 - divergences of opinion
 - consensus problems
 - evaluation problems

Research

(this talk)

syssec – Stefan Rass

Risk Assessment

- "On risks and side effects, please ask..." → your experts
- A standard problem: you ask two people and get three opinions

Risk Assessment

- "On risks and side effects, please ask..." → your experts
- A standard problem: you ask two people and get three opinions
- The standard solutions: Consensus, compromise, aggregation

...and for the aftermath?

- If nevertheless (no) damage occurs:
 - ...were all ignored by the compromise \rightarrow remission of guilt
 - ...some had pointed out possibly higher damages \rightarrow "It is always easy to evaluate past events with the wisdom of hindsight."
- \rightarrow none of this is helpful to limit or repair the current damage...

Risk Assessment "2.0"

- "On risks and side effects, please ask..." \rightarrow your experts
- A standard problem: you ask two people and get three opinions

possible effects (opinions)

Numbers vs. Distributions 1

Component: database server,	Risk assessment (e.g., CVSS) by experts				
scenario: outage	#1	#2	#3	#4	
Risk <mark>(actual state)</mark>	7.3	7.9	6.7	8.1	
Countermeasure 1:	Other DBMS software				
Countermeasure 2:	Redundancy (mirroring)		ing)		
RaM* 1:	6.5	6.7	2.8	7.1	
RaM 2:	6.3	6.9	3.2	7.0	

* RaM: Risk after Mitigation

Numbers vs. Distributions 2

Comparison of Distributions 1

- The simplest method^[1] "risk = impact × likelihood" is not always best...
- Intuition:
 - small damages can be compensated by the "natural" resilience of the system (risk capital,...)
 - Improvements "on a small scale" generally do not require action
 - Potentially large (possible) damages are interesting (extreme value distributions,... tails of the distribution)
- Better selection criterion required

[1] Goodpasture, John C. (2004): *Quantitative methods in project management*. Boca Raton, Fla: J. Ross Pub.

20.09.2018 | 22

Comparison of Distributions 2

• Idea (informal): Embed distributions in a (richer) structure^[2]

- Effects / Benefits:
 - Ranking of two actions determined by likelihood for extreme events
 - Applicability of "more powerful" mathematical methods (without additional efforts)

[2] S.Rass, S. König, S. Schauer: Decisions with Uncertain Consequences – A Total Ordering on Loss-Distributions, PLoS ONE, 2016, 11, e0168583

Keynote @ NetWare 2018

Comparison of Distributions 3

 Problem: Compare two categorical distributions describing the effectiveness of two measures (Control 1 vs. Control 2)

Likelihood (prob. Index function)

Procedure:

- Preference wherever larger damage is less likely.
- On equal likelihood for the highest possible damage, the...

...and for the aftermath?

If nevertheless (no) a damage occurs:

- …all opinions were used for the evaluation equally → the whole team of experts bears the decision and the responsibility
- …some had pointed out possibly higher damages → their statements might have been decisive for other (better?) measures.

Multiple Goals

- Impact (damage) assessment: often categorical + multi-criteria
- Specific for individual contexts

Category	Financial loss	Image/Reputation ^[3]	•••
Negligible			
Low	< 100.000€		
Medium			
High		Loss of >% market share	
Very high			
Critical			

[3] Busby, J. S.; Onggo, B.S.S.; Liu, Y. (2016): *Agent-based computational modelling of social risk responses*. In: European Journal of Operational Research 251 (3), S. 1029–1042.

Keynote @ NetWare 2018

20.09.2018 | 26

Multicriteria Optimization

- Models remain structurally unchanged...
- ...and get only extended by an individual assessment per goal:

- Mathematical procedure analogous to the optimization of individual targets
- only transition to "weighted sum" of the individual target functions
- Result: Pareto optimality (depending on target priorities)

syssec – Stefan Rass

ne Theory for Security and Risk Management, Springer Birkhäuser, 2018 , pp. 285-31 Keynote @ NetWare 2018 | 30

syssec – Stefan Rass

in: Game Theory for Security and Risk Management, Springer Birkhäuser, 2018 , pp. 285-311 Keynote @ NetWare 2018 | 31

This project is supported by the European Commission through the FP7-SEC-2013-1 Grant Agreement Number: 608090

Status of (our) Research

- Data collection: online portals (surveys, crowdsourcing ...)
- The rest: implemented for the statistical software **R**
 - Construction of loss distributions from data
 - Comparison of distributions
 - Multi-criteria games and their solutions
- Package released under GPL
 @ <u>https://hyrim.net/software</u>

• Theory is freely available^[5,6,7] (open access)

R

🕽 🕈 🥶 🔹 🔛 😥 🚔 🦽 Go to Tex Function 🔤 🔛 🕈 🛛 Adding 🔹	🕓 Project: (Na
P package_SR_madRed.R = P demo_for_pager.R = P package_SR.R = P demo_SR.R = P package_2016-06-00.R =	
O D D Conta on Save 9 2 - D	🗢 Rus 🗣 🛡 Scarpe + 🗄 💓 🕞 🥐 Impert Dataset + 🖌
00 Cat - mpsivat, tow, we find we rund , outprint two	A Gobal Critorment •
70	print.mosq.equi. function (x. extended = FALSE)
71 # interessantes Ergebnis wit gewischter Strategie bei stetigen Verlusten und "eq <- m	ss(61, cutOff=6)" (siehe "p print.mosg.equi, function (x, cutoff=6)" (siehe "p
72 73 ## 3 strategies for attacker -> 3*(2*3)=18 payoff densities (habe die oben konstruien)	print,mosq.loss_function (x,)
74 payoffs - list(fill,fil2,fi21,fi22,f211,f212,f221,f222,f311,f312,f321,f322,f111,f112	f121.f122.f211.f212) print.summary.m. function (x,)
75 G2 <- mosg(n=2,m=3,payoffs,goals=3, goalDescriptions=c("g1", "g2", "g3"), defensesDes-	
76 eq2 <- mgss(G2,T=1000,weights-weights) 77 print(eq2)	summary.mosg.eq. function (object,)
78 print(eq2)	summary.mosg.lo. function (object,)
79 ## 4 strategies for attacker -> 3*(2*4)=24 payoff densities	testeq function (G, eq, s) variance function (x)
80 # TODO: fAXr d=4 gebt's nicht, da 4*(2*4) = 32> zu wenige Payoff-Matrizen gegeben!	
81 payoffs ~ list(fill,fil2,fil2,fil2,fil2,fil2,fil2,fil2,	
83 # iterate for exactly T rounds (disregarding the precision)	Files Plats Packages Help Viewer
84 eq3 <- moss(63,T=1000,weights-weights)	🕼 💿 🖉 Zeam 🐺 Export - 9 🖌 😵 Fability -
85 # iterate until the desired precision is reached [iteration count unlimited]	
86 #for(i in 1:100) { 87 # weights <- runif(3.0.10)	
all # weights <- weights /s surveights)	
89 # eq3 <- mqss(G),eps=0.001,T=1000,weights-weights)	
90 # orint(weights)	
1077 (Belevit) 1	R Script = N _
Canada -/ O	• •
loss distribution for multiobjective security game (HOSG)	8 ()
	8 ()
type: continuous loss canaet 1 to 10	6
loss range: 1 to 10 wean: 5.77067269352434	Ö
loss range: 1 to 10 mean: 5.7706728332434 arriance: 6.62183484229899	5
loss ranget 1 to 10 menti 5.770670332434 qarianes: 6,62183484228899 gantiles:	0
loss ranget 1 to 10 menti 5.770670332434 qarianes: 6,62183484228899 gantiles:	5
ios range: 1 to 10 ear:3.770627928224849 marianes: 6.62131848422999 pantiles: 28 509 735 996 1,] 3.137665 4.025999 5.028412 7.269073 9.999725	9 - 0
ios range: 1 to 10 ear:3.770627928224849 marianes: 6.62131848422999 pantiles: 28 509 735 996 1,] 3.137665 4.025999 5.028412 7.269073 9.999725	5
ios range: 1 to 10 ear:3.770627928224849 marianes: 6.62131848422999 pantiles: 28 509 735 996 1,] 3.137665 4.025999 5.028412 7.269073 9.999725	0 10 10 10 10 10 10 10 10 10 1
The restrict 15 m 10 metric contract (151204753900 metric contract (151204753900 metric contract (15120475390) (1512047647539000) metric contract (1512047530) metric contract (1512	
insertion: 1.0 0 main: 3.0 6.0 3.000 pertition: 22 3.00 7.9 9.00 p.1 3.11000 4.02500 5.05612 7.00073 9.99923 eqt applications for applicables/security game (MDSS) pertitive (applicables/security game (MDSS) pertitive (applicables/security game (MDSS)	0
The restrict 15 m 10 metric contract (151204753900 metric contract (151204753900 metric contract (15120475390) (1512047647539000) metric contract (1512047530) metric contract (1512	
iss: resp:	0 30 0
iss: resp: 1 to 10 iss: resp: 1 to 10 partition: 2 to 2007 9, 9992 partition: 2 to 2007 9, 9992 ext: 1 to 2007 9, 9992	
The result of the ID mentations of the ID partition (1997) (1997) (1999) partition (1997) (1999) (1999) equilibrium for multidefective security game (0050) withing defense strategy: part part task attack strateging per gual; (1997)	
line receipt 1 to 10 line receipt 1 to 10 line receipt 1 to 10 line receipt 1 to 10 line receipt 1 to 10 end end end end end end end end	
The result of the file of the results of the result	
line receipt 1 to 10 line receipt 1 to 10 line receipt 1 to 10 line receipt 1 to 10 line receipt 1 to 10 end end end end end end end end	

(open source, GPL)

- [5] Rass, S.; König, S.; Schauer, S. (2017): *Defending Against Advanced Persistent Threats Using Game-Theory*. In: PLoS ONE 12 (1), e0168675. DOI: 10.1371/journal.pone.0168675.
- [6] Rass, S.; König, S.; Schauer, S. (2016): *Decisions with Uncertain Consequences-A Total Ordering on Loss-Distributions*. In: PLoS ONE 11 (12), e0168583. DOI: 10.1371/journal.pone.0168583.
- [7] https://arxiv.org/abs/1506.07368 und https://arxiv.org/abs/1511.08591

Theory in a Book

- The following volume compiles most of the theory covered here, extended by
 - applications
 - selected further (alternative) game-theoretic models
- Published by Springer <u>https://www.springer.com/us/book/9783319752679</u>
- Available at Amazon and other retailers:

Game Theory for Security and Risk Management

From Theory to Practice

🕲 Birkhäuser

Image source: Amazon

Contemporary Security Games

- Game theory for Security → active area of research (<u>www.gamesec-conf.org</u>)
- Security by (game-theoretic) multipath transmission
- End Users (a selection^[8]):
 - US Air Force: recognition of malware
 - US Coast Guards: optimal patrolling in harbor areas
 - US Border Control: optimized border checks
 - Airline security: optimized passenger screenings
 - ...
 - ...maybe you?

[8] M. Tambe (2011): Security and Game Theory: Algorithms, Deployed Systems, Lessons Learned, Cambridge University Press

Secure Multipath Routing^[9] (SMR)

- Split the message into parts (e.g., via secret sharing)
- Deliver the parts over disjoint paths \rightarrow enforce interception of several paths
- Implementable by segment or preferred path routing

SMR: Game-Theoretic Analysis

- Multipath transmission admits a simple game-theoretic formulation
- Risk ρ (saddle-point value of the game) upper-bounds the likelihood for a successful attack (analysis similar to stone-scissors-paper):

$Pr(eavesdropping) \le \rho$

- Theorem^[10]: Let ρ be the game-theoretic risk. Then, every $\varepsilon > 0$ admits an efficient protocol (with polynomial overhead) such that the risk (likelihood) of eavesdropping is $\leq \varepsilon$, if and only if, $\rho < 1$.
- This even holds under the relaxed assumption that the attacker can fiddle with the routing (to a limited extent)
- Industrial research project "RSB" by the Austrian Institute of Technology

[10] S. Rass, S. König: *Indirect Eavesdropping in Quantum Networks*, ICQNM 2011, XPS Publishing Services, p. 83-88, available @ ThinkMind (open access)

Keynote @ NetWare 2018

Multipath Authentication^[10]

- Sender "signs" a message using secrets shared with direct neighbours
- Receiver asks these neighbours to verify the message authentication code (MAC)
- Again: implementable by segment or preferred path routing
- Security analysis and –guarantees like for SMR (previous slide).
- Industrial research project "RSB" by the Austrian Institute of Technology
 - [10] S. Rass, P. Schartner: Multipath Authentication without shared Secrets and with Applications in Quantum Networks, Proc. of the Int. Conf. on Security and Management (SAM), CSREA Press, 2010, 1, pp.111-115

Thanks for listening!

Questions?

IT security as a game

Decisions under uncertainty in risk management

Stefan Rass

Associate Professor @ Alpen-Adria Universität Klagenfurt Institute of Applied Informatics – System Security stefan.rass@aau.at

