
Challenges in Programming
Modern Parallel Systems

Sebastiano Fabio Schifano

University of Ferrara and INFN

July 23, 2018
The Eighth International Conference on

Advanced Communications and Computation
INFOCOMP

Barcelona - Spain

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 1 / 58

Introduction

several processors are available with different architectures

application codes and perfomance are hardly portable across different processor
architectures

compilers have improved but are far from making it easy to move from one
architecture to the other

find out how to program efficiently latest processors "minimizing" changes in the
code

Focus
Optimization of Lattice-based applications on latest multi- and many-core
processors

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 2 / 58

Outline

1 Lattice Boltzmann Methods

2 Panorama of Computing Architectures and Programming Tools

3 Computing on multi- and many-core Processors

4 Computing on GP-GPUs

5 Summary and Conclusions

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 3 / 58

Background: Let me introduce myself

Development of computing systems optimized for computational physics:

APEmille and apeNEXT: LQCD-machines

AMchip: pattern matching processor, installed at CDF

Janus I+II: FPGA-based system for spin-glass simulations

QPACE: Cell-based machine, mainly LQCD

AuroraScience: multi-core based machine

EuroEXA: hybrid ARM+FPGA exascale system

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 4 / 58

APEmille e apeNEXT (2000 and 2004)

Custom HPC systems are not easy to use

Require deep knowledges of hardware structure, and lack of standard programming tools !

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 5 / 58

Janus I (2007)

256 FPGAs

16 boards

8 host PC

Monte Carlo simulations
of Spin Glass systems

Custom HPC systems are not easy to use
Deep knowledges are required, and lack of standard programming tools !
Code for FPGA are far to be portable across different architectures !

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 6 / 58

Janus II (2012)

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 7 / 58

QPACE Machine (2008)

8 backplanes per rack

256 nodes (2048 cores)

16 root-cards

8 cold-plates

26 Tflops peak
double-precision

35 KWatt maximum
power consumption

750 MFLOPS / Watt

TOP-GREEN 500 in
Nov.’09 and July’10

Custom HPC systems are not easy to use
Deep knowledges are required, and lack of standard programming tools !

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 8 / 58

Use of recent processors

QPACE has been the last attempt (in our community) to use
custom(-ized) HPC systems

QPACE has been the first attempt (in our community) to use a
commodity processor interconnected by a custom network

After we focus on how and how well we can use recent developed
processors for our applications, LQCD LBM and others,

and on which issues we have to face out and how we can program them
at best.

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 9 / 58

Hardware Evolution

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 10 / 58

The Multi-core processors era begins !

Multi-core architecture allows CPU performances to scale according to
Moore’s law.

increase frequency beyond
≈ 3 − 4 GHz is not possible

assembly more CPUs in a
single silicon device 4

CPUs capable to execute
vector instructions 4

great impact on application
performance and design 8

move challenge to exploit
high-performance computing
from HW to SW 8

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 11 / 58

So ... what is changing in practice ?

. . . from one big-plow to many small-plows model !

one big processor: low-latency and good throughput;

many small processors (core): high throughput and reasonable latency;

how to manage many processor cores ?

Better if you can use both !!! May be hard to program and get good efficiency !

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 12 / 58

So ... what is changing in practice ?

. . . from one big-plow to many small-plows model !

one big processor: low-latency and good throughput;

many small processors (core): high throughput and reasonable latency;

how to manage many processor cores ?

Better if you can use both !!! May be hard to program and get good efficiency !

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 12 / 58

... and ... what is changing in practice ?

. . . and from one-hand one-beer to one-hand many-beers model !

vector instructions improve computing throughput . . .

. . . provided there are many data to process !

How to exploit vector instructions ?

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 13 / 58

... and ... what is changing in practice ?

. . . and from one-hand one-beer to one-hand many-beers model !

vector instructions improve computing throughput . . .

. . . provided there are many data to process !

How to exploit vector instructions ?

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 13 / 58

... just to give an idea of what changes in practice !

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 14 / 58

Many Different Cores

several processors are available with different architectures

different programming models

different level of parallelism

different vector instructions

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 15 / 58

Lattice Boltzmann Methods

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 16 / 58

Lattice Boltzmann Methods (LBM)
a class of computational fluid dynamics (CFD) methods

discrete Boltzmann equation instead of Navier-Stokes equations

sets of virtual particles, called populations, arranged at edges of a
D-dimensional (D = 2,3) lattice

each population fi (x , t) has a given fixed lattice velocity ci , drifting – at
each time step – towards a nearby lattice-site;

populations evolve in discrete time according to the following equation:

fi (x + ci ∆t , t + ∆t) = fi (x , t)−
∆t
τ

(
fi (x , t)− f (eq)

i

)
macroscopic observables, like density ρ, velocity u and temperature T ,
are defined in terms of populations fi (x , t):

ρ =
∑

i

fi ρu =
∑

i

ci fi DρT =
∑

i

|ci − u|2 fi

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 17 / 58

LBM models

DnQk:

n is the spatial dimension,

k is the number of populations per lattice site

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 18 / 58

LBM Computational Scheme
Rewriting evolution equation as

fi (y , t + ∆t) = fi (y − ci ∆t , t)− ∆t
τ

(
fi (y − ci ∆t , t)− f (eq)

i

)
being y = x + ci ∆t , we can handle it by a two-step algorithm:

1 propagate:
fi (y − ci ∆t , t)

gathering from neighboring sites the values of the fields fi corresponding
to populations drifting towards y with velocity ci ;

2 collide:
−∆t
τ

(
fi (y − ci ∆t , t)− f (eq)

i

)
compute the bulk properties density ρ and velocity u, use these to
compute the equilibrium distribution f (eq)

i , and then relax the fluid
distribution functions to the equilibrium state (τ relaxation time).

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 19 / 58

LBM Computational Scheme
foreach time−step

foreach lattice−point
propagate () ;

endfor

foreach lattice−point
collide () ;

endfor

endfor

embarassing parallelism: all sites can be processed in parallel applying
in sequence propagate and collide

two relevant kernels:
I propagate memory-intensive,
I collide compute-intensive;

propagate and collide can be fused in a single step;

good tool to stress, test and benchmark computing systems.

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 20 / 58

D2Q37 LBM Application

D2Q37 is a 2D LBM model with 37 velocity
components (populations);

suitable to study behaviour of compressible
gas and fluids optionally in presence of
combustion1 effects;

include correct treatment of Navier-Stokes,
heat transport and perfect-gas (P = ρT) equations;

used to study Rayleight-Taylor effects of stacked fluids at different temperature
and density with periodic boundary conditions along one dimension;

propagate: memory-intensive, access neighbours cells at distance 1,2, and 3,
generate memory-accesses with sparse addressing patterns;

collide compute-intensive, requires ≈ 6500 DP floating-point operations, is local.

1chemical reactions turning cold-mixture of reactants into hot-mixture of burnt
product.

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 21 / 58

Rayleigh-Taylor Instability Simulation with D2Q37
Instability at the contact-surface of two fluids of different densities and
temperature triggered by gravity.

A cold-dense fluid over a less dense and warmer fluid triggers an instability
that mixes the two fluid-regions (till equilibrium is reached).

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 22 / 58

D2Q37

Rayleight-Taylor effects on two stacked fluids

Rayleight-Taylor effects on three stacked fluids

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 23 / 58

D2Q37: pseudo-code

foreach time−step

foreach lattice−point
propagate () ;

endfor

boundary_conditions () ;

foreach lattice−point
collide () ;

endfor

endfor

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 24 / 58

D2Q37: propagation scheme

require to access neighbours cells at distance 1,2, and 3,

generate memory-accesses with sparse addressing patterns.

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 25 / 58

D2Q37: boundary-conditions

we simulate a 2D lattice with
periodic-boundaries along x-direction

at the top and the bottom boundary
conditions are enforced:

I to adjust some values at sites
y = 0 . . . 2 and y = Ny − 3 . . .Ny − 1

I e.g. set vertical velocity to zero

This step (bc) is computed before the collision step.

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 26 / 58

D2Q37 collision

collision is computed at each lattice-cell site

computational intensive:
for the D2Q37 model requires ≈ 6500 DP floating point operations

computation is completely local:
arithmetic operations require only the populations associated to the site

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 27 / 58

D2Q37 pseudo-code

foreach time−step

propagate_and_collide_bulk ()

update_halos_LR_halos () ;

propagate_and_collide_LR_borders ()

update_halos_TB_halos () ;

propagate_top_and_bot () ;

boundary_conditions () ;

collide_top_and_top () ;

endfor

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 28 / 58

Panorama of Computing Architectures and
Programming Tools

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 29 / 58

Panorama of “modern” processors ... neglecting many details

apeNEXT Xeon E5-2697 v4 Xeon 8160 Xeon Phy 7230 P100 V100
Ape Broadwell Skylake KNL Pascal Volta

Year 2002 2016 2017 2016 2016 2017
f [GHZ] 0.2 2.3 2.1 1.3 1.3 1.3
#cores / SMs 1 18 24 64 56 80
#threads / CUDA-cores 1 36 48 256 3584 5120
PDP [GFlops] 1.6 650 1533 2662 4759 7000
βmem [GB/s] 3.2 76.8 119.21 400 732 900
βnet [GB/s] 1.2 12.5 12.5 12.5 12.5 12.5
Watt 4 145 150 215 250 250

P/W 0.4 4.5 10 12 19 28
P/βmem 0.5 8.5 13 6.6 6.5 7.7
P/βnet 1.3 52 123 213 381 560
P × λ 240 331’000 766’000 1’331’000 2’379’000 3’500’000

βnet for apeNEXT is 200 MB/s x 6, λ = 150 ns

βnet for P100 and V100 is Mellanox 4X EDR≈ 12.5 GB/s, λ = 500 ns

βnet for Xeon is OmniPath 100 Gbit/s = 12.5 GB/s, λ = 500 ns

several levels of parallelism: P = f × #cores× #opPerCycle× #flopPerOp

memory layout plays an important role also for computing performances.

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 30 / 58

Programming Tools

Together with different processors several programming tools are available:

Target Model Comment

pThreads CPU,MIC library OS dependent
OpenMP CPU,MIC,(GPU) directives supported by major compilers
OpenACC GPU,(CPU) directives supported by PGI, Cray and GCC
CUDA GPU extensions supported by NVIDIA compiler

TargetDP CPU,MIC,GPU defines C defines
GRID CPU,MIC extensions C++ extensions + intrinsics

none fully support all architectures

TargetDP and GRID a programming frameworks developed by academic
research groups

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 31 / 58

Computing on multi- and many-core Processors

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 32 / 58

Architecture of Intel multi- and many-core processors

several cores supporting each 2, 4 threads

several hierarchy of caches (L1, L2, L3)

large shared LL cache (O(10) MB for CPUs, 16 GB for KNL)

large VPUs (256-bit, 512-bit)

out-of-order execution (CPU and KNL)

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 33 / 58

Programming Issues

P = f × #cores× nInstrPerCycle× nFlopPerInstr

core parallelism:
keep busy all available cores of a processor;

hyper-threading:
each core should run several (2, 3, 4) threads to keep busy hardware pipelines and hide
memory access latency;

vectorization:
each core should process several data-elements (4, 8,. . .) in parallel using vector
(streaming) instructions (SIMD parallelism);

thread and memory affinity:
many systems are dual-processors, threads of same process should be tied to one
processor and access the closest memory bank;

cache-awareness:
exploit cache locality, cache reuse, avoid reads for ownerships (RFO). RFO is a read
operation issued with intent to write to that memory address;

data layout:
relevants to expoit efficient vectorization and memory accesses.

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 34 / 58

Core parallelism and hyperthreading
Run multi-threaded or multi-process application

single-process multi-threaded application:
one process spawning several threads

multi-process application:
run several processes

Example: for LBM divide/slice the lattice domain among the threads.

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 35 / 58

Core parallelism: OpenMP

Each core executes a thread processing a sub-lattice:

void propagate (nxt , prv) {

#pragma omp parallel for schedule (static)
for (xx = XMIN ; xx < XMAX ; xx++) {

for (yy = YMIN ; yy < YMAX ; yy++) {
propagate_site ()

}
}

}

xx-loop is partitioned among threads each executing the inner loop and
working on a portion/slice of lattice

OpenMP is a standard broadly supported by several compilers for many
architectures.

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 36 / 58

Core parallelism: MPI
Each process execute the same code on a different sub-lattice

for (step = 0; step < MAXSTEP ; step++) {

comm () ; / / exchange borders

propagate () ; / / apply propagate

bc () ; / / apply boundary c o nd i t i on to top and bottom rows

collide () ; / / compute c o l l i d e

}

MPI vs OpenMP:

OpenMP is shared-memory, each thread can access data managed by
other threads

MPI not allows shared memory and requires explicit communications to
access data managed by other processes.

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 37 / 58

Vector programming using Intrinsics
Intrinsincs: special functions mapped onto assembly instructions.
Populations of 8 lattice-cells are packed in a AVX vector of 8-doubles

struct {
__m512d vp0 ;
__m512d vp1 ;
__m512d vp2 ;
. . .
__m512d vp36 ;

} vpop_t ;

vpop_t lattice [LX] [LY] ;

Intrinsics
d = a× b + c =⇒ d = _m512_fmadd_pd(a,b,c)

Bad news
Instrinsics are not portable across different architectures !

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 38 / 58

Vector programming through directives
Directives tell the compiler how to vectorize the code.

typedef struct {
double *p [NPOP] ;

} pop_soa_t ;

/ / sn ippe t o f propagate code to move popu la t ion index 0
#pragma omp parallel for schedule (static)
for (xx = XMIN ; xx < stopx ; xx++) {

#pragma vector nontemporal
for (yy = YMIN ; yy < YMAX ; yy++) {

idx = IDX (xx ,yy) ;
(nxt−>p [0]) [idx] = (prv−>p [0]) [idx+OXM3YP1] ;

}
}

pragma vector: yy loop can be vectorized: 2 or more iterations can be executed in
parallel using SIMD instructions;

nontemporal: store can by-pass read-for-ownership (RFO).

Good/Bad news

Directives are fully portable across several architectures !
Proprietary directives are not fully portable: Intel vs OpenMP !

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 39 / 58

Thread and Memory Affinity
Typical architecture of a standard cluster node:

affinity of threads and memory allocation

control affinity with numactl or throught specific flags of mpirun or job
submission system.

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 40 / 58

Optimization of Propagate
Running on a dual-socket Xeon E5-2680 Sandybridge:

Version including all optimizations performs at ≈ 58 MB/s, ≈ 68% of peak
(85.3 MB/s) and very close to memory-copy (68.5 MB/s).

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 41 / 58

Memory Layout for vectorizing LBM: AoS vs SoA

#define N (LX*LY)
typedef struct {
double p1 ; / / popu la t ion 1
double p2 ; / / popu la t ion 2
. . .
double p37 ; / / popu la t ion 37

} pop_t ;

pop_t lattice [N] ;

#define N (LX*LY)
typedef struct {
double p1 [N] ; / / popu la t ion 1
double p2 [N] ; / / popu la t ion 2
. . .
double p37 [N] ; / / popu la t ion 37

} pop_t ;

pop_t lattice ;

AoS (upper) site pop. data of each site close in memory

SoA (lower) same-index pop. data of different site close in memory

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 42 / 58

Results: Propagate and Collide Performance on KNL

Propagate:
I FLAT modes: performances increases from AoS→ SoA→ CSoA
I MCDRAM: ≈ 400 GB/s, DDR4: ≈ 80GB/s, CACHE: ≈ 60GB/s

Collide:
I FLAT-MCDRAM: performance increases from AoS→ CSoA→ CAoSoA
I CAoSoA: sustained performance of 1 Tflops (≈ 30% of raw peak)
I FLAT-DDR4 and Cache modes: performances are limited by memory bandwidth.

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 43 / 58

Results: Propagate Performance on SkyLake

propagate ≈ 100 GB/s, approx85% of raw peak.

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 44 / 58

Results: Collide Performance on Skylake

collide ≈ 530 GFlops. ≈ 35% of raw peak.

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 45 / 58

Computing on GP-GPUs

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 46 / 58

GP-GPUs: why are they interesting ?

Xeon E5-2697 v4 Xeon 8160 Xeon Phy 7230 P100 V100

Year 2016 2017 2016 2016 2017
PDP [GFlops] 650 1533 2662 4759 7000
βmem [GB/s] 76.8 119.21 400 732 900

P/W 4.5 10 12 19 28

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 47 / 58

Why may not be interesting ?

Amdahl’s Law
Speedup of an accelerated program is limited by the fraction of time run on the host.

Accelerating the 3/4 of the code, the maximum theoretical achievable speedup is limited to 4 !!!

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 48 / 58

GP-GPU architecture: Basics
C2050 / C2070 K20X K40 K80 P100 V100

GPU GF100 GK110 GK110B GK210 × 2 P100 V100
Number of SMs 16 14 15 13 × 2 56 80
Number of CUDA-cores 448 2688 2880 2496 × 2 3584 5120
Nominal clock frequency (MHz) 1150 735 745 562 1328 1300
Nominal DP performance (Gflops) 515 1310 1430 935 × 2 4760 7450
Boosted clock frequency (MHz) – – 875 875 1480 1530
Boosted DP performance(Gflops) – – 1660 1455 × 2 5304 7800

Total available memory (GB) 3 / 6 6 12 12 × 2 16 16
Memory bus width (bit) 384 384 384 384 × 2 4096 4096
Peak mem. BW (ECC-off) (GB/s) 144 250 288 240 × 2 732 900

Max Power (Watt) 215 235 235 300 300 300

multi-core processors

processing units are called Streaming Multiprocessors (SM on Fermi and SMX on Kepler)

each processing unit has several compute-units called CUDA-cores

at each clock-cycle each SM execute a group (warp) of 32 operations called CUDA-threads

CUDA-threads are executed in Single Instruction Multiple Threads SIMT fashion

SIMT execution is similar to SIMD but more flexible, e.g. different threads of a SIMT group
are allowed to take different branches at a performance penalty.

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 49 / 58

Why GPUs can be interesting: LBM Performance
Comparison

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 50 / 58

Memory layout for GPUs: AoS vs SoA
On GPUs memory layout is relevant for performances:

NVIDIA K40 GPU
propagate ≈ 10X faster, collide ≈ 2X faster

SoA gives the best results because enable vector processing and coalescing access to
memory.

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 51 / 58

Performance: Scalability

for each number of GPUs – in most cases – the lowest time corresponds
to 1D-tiling

scalability is limited to a small number of GPUs

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 52 / 58

Strong Scaling and Aggregate Performance

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 53 / 58

Summary and Conclusions

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 54 / 58

Summary and Conclusions

several different architectures in the panorama of processors, make it
difficult to develop and maintain application codes

each processor architecture needs specific optimizations.

Two major hardware choices:

GP-GPU systems

I offer high computing performance
I require specific programming frameworks
I CUDA codes are not portable across architectures

multi- and many-core x86 processors

I offer more flexibility
I backward compatible
I good computing performances
I all levels of parallelism need to be exploited
I MIC architecture (KNH) . . . has been abandoned (!?).

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 55 / 58

Summary and Conclusions: optimizations
vectorization:

I intrinsic operations: good performance, not portable;
I directive-based approaches like OpenMP and OpenACC:

F directives can be ignored,
F directives make the code more portable,
F specific compiler directives are not portable.

I OpenACC:
F an easy way to use GPUs
F code does not need many changes
F also targets standard multi-core processors

I OpenMP: standard support also accelerators

core/thread parallelism
I OpenMP is a standard supported by all major compilers
I OpenMP allow easy distribution of workload across cores/threads
I MPI is a standard but does not exploit shared-memory

data layout: crucial for performance, different kernels may require
different data layouts

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 56 / 58

Conclusions

Multi and many-core architectures have a big inpact on programming.

Efficient programming requires to exploit all features of hardware
systems: core parallelism, data parallelism, cache optimizations, NUMA
(Non Uniform Memory Architecture) system

several architectures and several ways to program them

data structure have a big impact on performance

portability of code and performance is necessary

energy efficiency is a big issue

Programming commodity HPC system require deep knowledge !

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 57 / 58

Acknowledgments
Luca Biferale, Mauro Sbragaglia, Patrizio Ripesi
University of Tor Vergata and INFN Roma, Italy

Andrea Scagliarini
CNR, Istituto per le Applicazioni del Calcolo, Rome, Italy

Filippo Mantovani
Barcelona Supercomputer Center, Spain

Enrico Calore, Alessandro Gabbana, Marcello Pivanti, Sebastiano Fabio Schifano,
Raffaele Tripiccione
University and INFN of Ferrara, Italy

Federico Toschi
Eindhoven University of Technology The Netherlands, and CNR-IAC, Roma Italy

Fabio Pozzati, Alessio Bertazzo, Gianluca Crimi, Elisa Pellegrini, Nicola Demo, Giovanni
Pagliarini
University of Ferrara

Results presented here have been developed in the frameworks of the INFN
projects: COKA, COSA and SUMA.

Thanks to CINECA, INFN, BSC and JSC for access to their systems.

S. F. Schifano (Univ. and INFN of Ferrara) Challenges in Programming HPC Jul 23, 2018 58 / 58

	Lattice Boltzmann Methods
	Panorama of Computing Architectures and Programming Tools
	Computing on multi- and many-core Processors
	Computing on GP-GPUs
	Summary and Conclusions

