

Washingt WNI	- Electrical Engineering and Computer	
TASK-TO	-ISLAND ASSIGNMENT PROE	LEM FORMULATION
	Description	Formulation
Objective	Minimize the wasted workload per pha	ASE. $\begin{array}{l} \underset{y_{l,k},F_k,c_k,z_{k,j},x_{l,k}}{\textit{Minimize}} Y_j = \sum_{i=1}^N \sum_{k=1}^K y_{i,k} \forall T_j \in T \end{array}$
Constraint s	Compute the wasted workload for a ta	
	Approximate the maximum workload a its reciprocal.	$c_k = \sum_{j=1}^r a_j \cdot z_{k,j} \forall i_k \in I$
	Determine one of the tasks, in the pha as the one with the maximum workloa	$T \to X \to C$, $\forall T \to \in I \to \forall I_1 \in I$
	A task is assigned to only one island.	$\sum_{i=1}^{K} x_{i,k} = 1 \forall \tau_{j,i} \in T_j$
	All islands have the same number of t (symmetry of islands).	k=1
	Compute the probability of approximation the maximum workload with a line	ting $\sum_{j=1}^{r} z_{k,j} = 1 \forall i_k \in I$

Washingi Uni DYNAI		
	Description	Formulation
Objective	Minimize the makespan.	$\underset{\theta_{j},a_{k,l,j}}{\textit{Minimize}} \theta = \sum_{j=1}^{P} \theta_{j}$
	Compute the length of an execution phase after assigning the V/F levels of islands.	$\sum_{l=1}^{L} d_{k,l,j} \cdot a_{k,l,j} \leq \theta_j \forall i_k \in I, \forall T_j \in T$
Constraint s	Only one V/F level is assigned to an island in a given execution phase.	$\sum_{l=1}^{L} a_{k,l,j} = 1 \forall i_k \in I, \forall T_j \in T$
	The energy consumption of system is below the pre-defined energy budget.	$\sum_{j=1}^{P} \sum_{k=1}^{K} \sum_{l=1}^{L} e_{k,l,j} \cdot a_{k,l,j} \le EB EB \ge 0$
September 2018		

	WASHINGTON STATE School of Electrical Engineering and Computer Science VOILAND COLLEGE OF ENGINEERING AND ARCHITECTURE					
SIM	ULAI	ΓΙΟΝ	SET	JP		
	We use GEM5 as a full system simulator to obtain processor-level performance information.					
	Processor-level statistics generated by GEM5 simulations are fed to McPAT (Multi-core Power, Area and Timing).					
	McPAT generates processor-level power/energy statistics.					
Voltage (V)/Frequency (GHz) levels Processor configuration						
	0.5	1.25		Processors	64 Alpha cores	
	0.667	1.666		L1-cache	64kByte, 4-way associative, 64 Byte	
	0.834	2.083		L2-cache	Shared 8 MBytes, 8-way	
	1.0	2.5			associative, 64 Byte 128KBytes distributed per core	
				Main memory	512 MBytes	
September 20						

WASHINGTO		School of Electrical Engineering and VOILAND COLLEGE OF ENGINEERIN		
BENC	HMAR	KS		
			ASH-2 and PARSE lered in our simulation	
	Benchmark	Problem size	Application domain]
	FFT	65536 Data Points	Fast Fourier Transform	
	LU	512x512 Matrix, 16x16 Blocks	Dense matrix computation	
	CANNEAL	200,000 Elements	Minimize routing cost in chip with simulated annealing	
				-
September 2018				4

