
Desk-top VR – A Hands-on
Approach for Hands-free

Experience
Professor Zhijie Xu

Centre for Visual and Immersive Computing

University of Huddersfield, UK

Things about Huddersfield …

Outline

1. What is VR?

2. What is Desk-top VR?

3. How to develop a Desk-top VR system?

4. What are the potential usages of Desk-top VR?

5. Discussions

• Is there an official definition for VR?

• “… a high-end user-computer interface that

involves real-time simulation and interaction

through multiple sensorial channels, i.e. visual,

auditory, haptic, olfactory.”

• “… VR should be computer-generated,

believable, interactive, explorable, immersive.”

• It’s more of an open discussion in science.

1. What is Virtual Reality?

More Cautiously …

• VR is a HCI effort; an integrative
system; a new Operating System;
an UI Paradigm; a technology
idealism.

• My Research Interests:
• Virtual and Augmented Reality

• Real-time Graphics

• Computer Vision and Machine
Learning

http://sweb.cityu.edu.hk/sm2203/oldclass2007/lab1/toc02/index.html

The Famous VR Triangle – does it
have to be equilateral?

HCI: An Empirical Research Perspective
- By I. Scott MacKenzie

Scale (sec) Time Units World (theory)
Months

SOCIAL BAND

Weeks

Days
Hours

RATIONAL BAND

10 min

Minutes
10 sec

COGNITIVE BAND

1 sec

100 ms
10 ms

BIOLOGICAL BAND

1 ms

100 μs
As VR Practitioners, we are
more or less here...

Questions Posed to HCI/VR

• How do you design interfaces to systems for:
• Users with special needs, i.e. disabled, children, elderly…

• Culture and international diversified

• Cognitively and physically varied

• But, to a degree, keeping universal usability

• …

A Pioneer: Ivan Sutherland's Sketchpad (1962)

• “With Sketchpad, commands were not typed. Users did not
"write letters to" the computer. Instead, objects were drawn,
resized, grabbed and moved, extended, deleted—directly,
using the light pen. Object manipulations worked with
constraints to maintain the geometric relationships and
properties of objects ...” – Ivan’s report

Efforts for making profits:

• The first commercial VR systems

appeared in the late 80s produced by

VPL Co. (California):

• The VPL “Data Glove” and

• The VPL “Eye Phone” HMD

Early Party Time (first wave - Virtual Reality in the
late 80s)

Emergence of first commercial

Toolkits:

WorldToolKit (Sense8 Co.);

Used in UoH between 98 and 04

VCToolkit (Division Ltd., UK);

Virtual Reality Toolkit VRT3

(Dimension Ltd./Superscape,

UK);

Cyberspace Developer Kit

(Autodesk)

VRML and Java3D

Early Party Time (first wave - Virtual
Reality in the early 90s)

PC boards still very slow

(7,000 – 35,000 polygons/sec);

First turnkey VR system –

Provision 100 (Division Ltd.)

Emergence of faster graphics

rendering architectures at UNC

Chapel Hill:

“Pixel Planes”;

Later “Pixel Flow”;

Extracts from my PhD project (1996)

Virtual Glider Simulator @ UoH (2003)

Neuropsychological Rehabilitation @ UoH (2003)

Virtual reality for neuropsychological
diagnosis and rehabilitation: A survey
August 2003. DOI:
10.1109/IV.2003.1217973
Conference: Information
Visualization, 2003. IV 2003.
https://ieeexplore.ieee.org/documen
t/1217973

https://ieeexplore.ieee.org/document/1217973

Hybrid AR Illumination @ UoH (2006)

2. Types of Virtual Reality

• Fully immersive

• Non-immersive

• Collaborative

• Web-based

• Augmented reality

Immersive VR

• Purposely designed input/output equipment

• Physically isolated from the real environment

• Real-time interaction

• Feeling of presence

Non-immersive (Desktop) VR

• Use of a monitor to display the virtual world

• Window on the world (Tardis?)

• Does not require special hardware

• Low cost

Augmented Reality

• Registered and non-registered hybrid display

• “Hot” in mobile solutions

• Huge potentials

VR Systems (Inputs, Outputs, Software)

Off-the-shelf products

• Kinect SDK

• Eye Tracker – GP3 Gazepoint

• Leap Motion

• Emotiv BMI

• VR Headsets (HMDs)

• …

VR Hardware

• Based on sensory channel accessed:
• Visual interfaces (hi-res, bio-convincing)

• Tracking interfaces (motion, eye/gaze)

• Auditory interfaces (3D spatial localization)

• Haptic interfaces (touch and force)

• Olfactory interfaces (smell, electric-nose)

• Based on process types:
• Input devices

• Output devices

• Personal displays

• Large volume displays

– Active glasses

– Workbenches;

– Microsoft Surface

– Caves;

– Walls;

Graphical Display

The Battle Front …

An anchoring research article: The Visual Display Transformation for Virtual Reality by Warren Robinett and Richard
Holloway http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.43.5727&rep=rep1&type=pdf

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.43.5727&rep=rep1&type=pdf

What’s well-understood?
- UNC VR Software (ref. the Anchoring Paper before)

𝑇𝑆_𝑂 = 𝑇𝑆_𝑈𝑆𝑇𝑈𝑆_𝑁𝑇𝑁_𝐸𝑇𝐸_𝐻𝑇𝐻_𝐻𝑆𝑇𝐻𝑆_𝑇𝐵𝑇𝑇𝐵_𝑅𝑇𝑅_𝑊𝑇𝑊_𝑂

• writing the visual display code for a virtual
reality system so,
• multiple users inhabit the same virtual world

simultaneously;
• each user has a stereoscopic display;
• the user's viewpoint is measured by a head

tracker;
• the display code matches the geometry of the

HMD, tracker, and optics;
• various HMDs and trackers can be supported

by changing parameters of the display code;
• the user can fly through the world, tilt the

world, and scale the world; and
• the user can grab and move virtual objects.

One Challenge - Recreating Visual Depth Cue

• Binocular Disparity (Stereopsis)

• Motion Parallax

• Binocular Occlusions

• Convergence/Divergence

• Result - tolerable convincing illusion of depth

• What’s missing?

• Another depth cue: focus (imaging manually zooming in/out of an
outdoor scene)

4-D Light Field Displays

https://www.researchgate.net/publication/259764186
https://spectrum.ieee.org/tech-talk/consumer-electronics/gaming/4d-light-field-displays-are-exactly-what-virtual-reality-needs

https://www.researchgate.net/publication/259764186
https://spectrum.ieee.org/tech-talk/consumer-electronics/gaming/4d-light-field-displays-are-exactly-what-virtual-reality-needs

Personal Observations

• 1st Generation VR (Accessing human
sensory channels, Passive)

• 2nd Generation VR (“Hacking” human
sensory channels, Active, Automated,
i.e. 4D Light Field Display, Structured
Light)

• 3rd Generation VR (AI, Autonomous)

• Where are we now? Approx. 1.5?

https://www.engineersgarage.com/articles/virtual-retinal-display

https://www.engineersgarage.com/articles/virtual-retinal-display

Input Devices: Tracking Interfaces

• Measure head, body, hand or eye motion, ideally in 6-DoF

• Tracking technologies: active, passive, or inertial

Trackers measure the motion of “objects”
such as user’s wrist or head vs. a fixed
system of coordinates.
Technologies to perform this task:
• Electromagnetic trackers;
• Ultrasonic trackers;
• Mechanical trackers;
• Inertial trackers;
• GPS

• Vision-based trackers (new and geared
to be favorite)

Technology Categorization

An electronics/signal processing approach:

• Measurement rate – Readings/sec;

• Sensing latency;

• Sensor noise and drift;

• Measurement accuracy (errors);

• Measurement repeatability;

• Tethered or wireless;

• Work envelope;

• Sensing degradation

Tracker Characteristics

Application focused, i.e. Gesture Interaction

• To enable “Direct Manipulation” or “seamless User Interface”,
interaction principles should be independent of any particular
hardware. The focuses are on:
• How does the user get content (both data and structure) into digital form? –

i.e. Virtual World/Environment Builder, Virtual Object Modeller.

• How does the user navigate around the content? – i.e. Virtual Environment
Navigator.

• How does the user manipulate the content (restructuring, revising,
replacing)? – i.e. Animation/Simulation Engine.

• The KEY role of VR software…

VR Software

• … not just device drivers but

• Virtual World (or Virtual Environment) Builder

• The core of a VR system

• Enables updates and rendering, interactions, object behaviors, simulations of
physical laws, audios, and network issues, etc.

• Commercial software, i.e., Unity, UnReal, 3D Studio Max, AutoCAD,
Solidwork, CATIA, AVEVA, QT Modeller …

• Or, Graphics API-based, DirectX, OpenGL, etc.

The Heart - Real-time Rasterizer

VR Software - Handles Interactions

• Virtual-hand/Gesture Recognition• Pick Screen/Ray-casting

• Steering mode
• hand-directed

• gaze-directed

• physical devices (steering wheel, flight sticks)

• Target-focused
• point at object, list of coordinates

• Path planning
• place markers in world

VR Software – Handles Navigation

• Physics-based activities

• Event-triggering mechanisms
• Collision detection

• Separating Planes

• Level-of-Details (LoD) Control

• Multimillion-particle simulations and
volumetric processing

• SIGGRAPH is a gold mine

VR Software – Handles Simulation

• https://www.youtube.com/watch?v=Jd3-eiid-
Uw&t=106s

• https://www.youtube.com/watch?v=h9kPI7_vhAU

• https://www.youtube.com/watch?v=rnlCGw-0R8g

3. How to develop a Desk-top VR
system? - Online Demos

https://www.youtube.com/watch?v=Jd3-eiid-Uw&t=106s
https://www.youtube.com/watch?v=h9kPI7_vhAU
https://www.youtube.com/watch?v=rnlCGw-0R8g
file:///G:/2018 Athens Greece/3Dheadtracking/KinectHeadTracking.exe

3-D System of coordinates of a VR object

Virtual objects have 6 degrees of freedom (D.O.Fs):

three translations, three rotations.

- Capable of object manipulation.

- Still needing position information for full

interaction.

An Analogue of 6DoF Tracking

Tutorial Goals

• A DIY VR Software Solution

• Accessing a real-time rendering pipeline
• Model manipulation

• Camera control/navigation

• Simulations

• through CV-based tracking

Development Tools

• Interactive Development Environments (IDE)
• Visual Studio, Eclipse…

• Sophisticated environments for the
development of software:
• Intelligent Editors – think word processor for

source code

• Debuggers – allows you to watch the code
execute to find problems (bugs)

• Profilers – enables analysis of the efficiency of
developed code

Development Tools

• Application Programming Interfaces (APIs)
• Libraries of useful code to use within into your source code

• DirectX – graphics/audio

• OpenGL – graphics

• Open Audio – audio

• Middleware – useful software APIs that facilitate various smaller tasks in games
(goes between other components)
• Physics, Data Processing, Networking, AI, User Interfaces

• Goto: http://www.gamemiddleware.org/middleware/index.html

http://www.gamemiddleware.org/middleware/index.html

Webcam Projects Development Framework

Human Computer
Interaction

Applications

Software
Development Kit

(SDK)

Hardware Driver

Operation System

In
te

gr
at

ed
 D

ev
el

o
p

m
en

t
En

vi
ro

n
m

en
t

(I
D

E)

…

Logitech HD Pro Webcam C920

Where everything starts
- Image Pixels

image

video

frames

One frame = image

Pixel matrix

One pixel

Understanding image channels
• Colour digital images are made of pixels, and pixels are made of

combinations of primary colours. A channel in this context is the
grayscale image of the same size as a colour image, made of just one of
these primary colours.

• For instance, an image from a standard digital camera will have a red(R),
green(G) and blue(B) channel.

• A grayscale image has just one channel.

R

G

B

grayscale images

Tutorial 1: Hands-on Development for Hands-
off VR System - Preparation

• Setup a C++ OpenCV Project in Visual Studio

• Load an image from a hard disk

• Display an image

• Use webcam to capture an image

• Operate on image sequences

• Simple video processing

Introducing OpenCV

• OpenCV (Open Source Computer Vision Library) is an
open source computer vision and machine learning
software library.

• The library has more than 2500 optimized algorithms,
which includes a comprehensive set of both classic and
state-of-the-art computer vision and machine learning
algorithms.

• It has C++, C, Python, Java and MATLAB interfaces and
supports Windows, Linux, Android and Mac OS.

Programming Tutorials
http://docs.opencv.org/master/d9/df8/
tutorial_root.html

Official Website
http://opencv.org/

http://docs.opencv.org/master/d9/df8/tutorial_root.html
http://opencv.org/

Step1: Creating an OpenCV Project
1. Creating a new win32 C++ console

application
2. Name the project

3. Use Application Wizard to choose
“Console application” and an
empty project

4. Add a new source files item named
as “HelloOpenCV.cpp”

Step1: Creating an OpenCV Project
Before coding, it is important to tell Visual C++ where to find the
libraries and includes files

opencv_world300.lib
opencv_ts300.lib
opencv_hal300.lib

Step 1: Creating an OpenCV Project
• When using openCV, following head files are usually included:

#include “opencv2\imgproc\imgproc.hpp”
#include “opencv2\highgui\highgui.hpp”
#include “opencv2\opencv.hpp”

• All classes and functions are defined within the same space cv

Step 2: Loading and displaying image

The first thing to do is to declare a variable that will hold the image. Under
OpenCV3.0, you can define an object of class cv::Mat

cv::Mat image;

The image can be loaded by using reading function cv::imread(), which can visit
the image from file, decode it, and allocate the memory. You can use absolute path
and relative path to locate an image file stored on your local hard disk:

image = cv::imread("dogs.png");

You can also check if the image has been correctly read by using a cv::Mat member
variable “data”:

if (!image.data) {
//process the error that no image has been created…

}

Step 2: Loading and displaying image

To display the image, a highgui module is provided by openCV, The name of the
image displaying window should be specified:

cv::imshow("Image Window", image);

Since it is a console windows that will terminate at the end of the main function, we
add an extra highgui method to wait for a user key before ending the program

cv::waitKey(0);

Step 3: Showing the result
After building the vc++ project, you can debug the code. The result is

The program can be stopped by pressing any key when the “Image Window” is activated.

More…
OpenCV offers a wide selection of processing functions. Most of them are easy to
use. For example, The image can be flipped horizontally by adding following
code:

cv::Mat flipImage;
cv::flip(image, flipImage, 1);
cv::imshow("Flip Image Window", flipImage);

You can also save the processed image on hard disk:

cv::imwrite(“flipped.bmp", flipImage);

Step 4: Reading webcam video streams

How it works…
To process a video sequence, we need to be able to read each of its frames, OpenCV
place an object of class cv::VideoCapture to perform frame extraction from
video files and webcams.

cv::VideoCapture webcam(0);

cv::VideoCapture videoFile("../bike.avi");

cv::VideoCapture object_name(parameters);

For using video files, parameters is the path of the file. For example,

For using webcams, parameters is an index number of each camera. “0” means
default camera. For example,

If you have more webcams installed, the index number can be 0,1,2,…

How it works…
Once the cv::VideoCapture object has been created, it can be verified through the
isOpened method:

if (!webcam.isOpened())
{

std::cout << "Cannot open the video cam" << std::endl;
return -1;

}

For accessing a frame, a method “read()” of cv::VideoCapture object can be
used. A variable also need to be defined for storing that frame.

webcam.read(frame);
cv::Mat frame;

If the “read()” failed to get a frame, it will return a “0”. In this case, the verification
and frame capture can be coded in one line:

if (!webcam.read(frame))
\\ do something

How it works…
while loop is used for renewing each frame. In this case, the “read()” should
be placed inside the loop. For playing the current frame in an image window,
some parameters are required to control the loop.

A flag should be defined for ending the loop when a key is pressed:

bool stop = false;
int const delay = 30;
while (!stop)
{

if (!webcam.read(frame))
break;

imshow("Video Window", frame);
if (cv::waitKey(delay) >= 0)

stop = true;
}

cv::waitKey(delay) waits for a pressed key and waits the event in milliseconds.
0 is the special value that means waiting a key to be pressed "forever". It returns the
code of the pressed key or -1 if no key was pressed before the specified time had
elapsed.

How it works…
The final statement calls the release method which will close the webcam.

webcam.release();

Running the programme

Step 5: Video Processing
Real-time video processing steps are usually added after getting each new frame. For
example, we can change the colour images into graylevel images. We use the
cvtColor function:

void cv::cvtColor(cv::Mat input, cv::Mat output, int method);

while (!stop)
{

if (!webcam.read(frame))
break;

imshow("Video Window", frame);
cv::cvtColor(frame, output, CV_RGB2GRAY);
imshow("Processed video", output);
if (cv::waitKey(delay) >= 0)

stop = true;
}

The function should be placed inside the loop:

Step 5: Video Processing

Tutorial 2: Handles Interactions and Navigation
• Histogram concepts

• HSV Histogram building

• Histogram-based template matching

• Template matching-based “tracking”

• Access virtual object’s “WORLD” matrix

• Access camera’s “VIEW” matrix

Conventional Tracking (3D to 3D)
vs. CV Tracking (2D to 3D)

Main CV Tasks

• Feature Engineering

• Image Stitching and Stereo Vision

• SfM and VSLAM

• 3-D Point Cloud Processing

• …

• Used for VR Input

• Object Detection and Recognition

• Object Tracking and Motion Estimation

• …

Solutions

• Easy cases:
• Stereopsis – 2 cameras generating a disparity map

• Hard cases:
• Converting 2D Image Coordinates to 3D World Coordinates

• Simplified way: Z = 0

• Other improvised methods

Main Process Flow

Point colourTracking(const Mat &frame, const MatND &hsv_hist)

Return a cv::Point type. The type contains
colour tracking result presented by (x,y) pairs.

x

y

(0,0)

(X1,Y1)

Input colour image. Input HSVhistogram is used as a colour
template, which tells the function which colour
should be tracked.

Using a colour histogram template to match image regions. The function returns the location of the biggest
matched region.

Input colour image.

Template histogram

colour matching

(X1,Y1)
The biggest region is returned

smaller matched
regions are assumed
as noise

How to construct the histogram template?

?
Run the “HS_colourSensor.exe” to create a template histogram file first and then use this file with the main
tracking function: colourTracking()

cv::FileStorage fs("colour_hist.yml", cv::FileStorage::READ);
if (!fs.isOpened()) {cout << "unable to open file storage!" << endl;}
fs["histogram"] >> hist;
fs.release();

The template file is saved as a “colour_hist.yml” file in the project folder. Read/load this file into cv::MatND as
a variable, which is used for saving multidimensional matrices.

cv::MatND hist;

How to read the histogram file:

HS_colourSensor.exe

“Tracking” at Runtime

colour_hist.yml

save

Colour Sensor (app)

image

use it in
your application

colourTracking() (x,y)

ID3D11Device*

ID3D11Device1*

ID3D11DeviceContext*

ID3D11DeviceContext1*

IDXGISwapChain*

IDXGISwapChain1*

ID3D11InputLayout*

ID3D11ShaderResourceView*

ID3D11VertexShader*

ID3D11RasterizerState*

ID3D11PixelShader*

ID3D11SamplerState*

ID3D11DepthStencilState*

ID3D11DepthStencilView*

ID3D11RenderTargetView*

struct SimpleVertex
{

XMFLOAT3 Pos;
XMFLOAT2 Tex;

};

XMMATRIX g_World;
XMMATRIX g_View;
XMMATRIX g_Projection;
XMFLOAT4 g_vMeshColor();

struct CBNeverChanges
{

XMMATRIX mView;
};
struct CBChangeOnResize{};
struct CBChangesEveryFrame{};

ID3D11Texture2D*
ID3D11Buffer*
ID3D11Buffer*
ID3D11Buffer*
ID3D11Buffer*
ID3D11Buffer*

Visual Display –A DirectX Rendering Pipeline

Colour Tracking for Camera Control

• For example, to be able to apply our Yaw rotation

• XMMATRIX yawMatrix;

• XMMatrixRotationAxis(&yawMatrix, &up,
yaw);

• To apply yaw, rotate the look & right vectors
about the up vector using the yaw matrix:

• XMVector3TransformCoord(&look, &look,
&yawMatrix);

• XMVector3TransformCoord(&right, &right,
&yawMatrix);

http://www.gamedev.net/topic/672039-xmvector3transformcoord/
http://www.gamedev.net/topic/672039-xmvector3transformcoord/

Tutorial 3: Marker-based Augmented Reality

• Marker detection

• Rendering operations

Marker-based AR

• Marker detection:
• Convert the input image to grayscale;

• Perform binary threshold operation;

• Detect contours;

• Search for possible markers;

• Detect and decode markers;

• Estimate marker 3D pose.

Marker-based AR

• Rendering operation:
• Draw a background image (the last

received frame);

• Copy image data to internal buffers;

• Processing the new frame and marker
detection;

• receive a list of the markers detected
on it;

• pass to the visualization controller
(decide what artificial 3D objects to
draw);

• Integration and rendering.

4. What are the potential usages of Desk-top VR?

Discussion session

Open Questions: contents, contents, contents …

• What fills Virtual Worlds will make or break the VR “frenzy”?

• Can we have genres for VE just like in games?

• Who are the future immersive experience practitioners (designers,
developers, users) and how to train them?

• UK Efforts

5. Summary

• VR had been here before …

• VR is attractive and “cool”

• Not all VR solutions are feasible right now

• But it looks here to stay with new drive from real
world applications and off-the-shelf technologies

• It’s a System’s perspective this tutorial follows…

