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UNIVERSIT

Neonatal diseases DI PARMA

m Involuntary contractions of one or more muscle groups due to a paroxysmal
neuronal discharge

m Age-dependent phenomena and symptoms of malfunctioning of the central
nervous system

m Incidence: 2.6%. for overall newborns, 11.1%. for preterm neonates and
13.5%. for underweight preterm neonates

m Four main categories: subtle, tonic, clonic and myoclonic
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neuronal discharge

m Age-dependent phenomena and symptoms of malfunctioning of the central
nervous system

m Incidence: 2.6%. for overall newborns, 11.1%. for preterm neonates and
13.5%. for underweight preterm neonates

m Four main categories: subtle, tonic, clonic and myoclonic

Respiration diseases

m Interruptions of the respiratory airflow

m Significant if longer than 20 s, or only 10 s if associated with other
signs/symptoms (oxygen desaturation in the arterial blood, or hypoxemia)

m Different types: central, obstructive and mixed.
m Associated with life-threatening disorders or congenital diseases
m Incidence: 2.3% of hospitalized infants, and 0.5%—0.6% of all newborns
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UNIVERSITA

Systems for patient monitoring DI PARMA
Seizures and nervous system ° N —
diseases: ey Y s o

movement
and brain
activity

m Based on EEG, ECG and EMG
systems .

data to a computer. /
Atechnician in

Respiration and apnea events:

m Measure the Respiratory Rate

Elastic belt
sensors around

J/ ;" .,-,=.;'

(RR) SLF
m Based on chest/abdomen elastic %
belts or nasal flow meter o
Both require prolonged monitoring and Ealleese At B
specialized medical staff earing | o6 o vt Al = ool evrt

event
Top fovels = wake/REM sieep

I ST N T

Botom lovels = deep sieep

Sleep Apnea Guide (2016), The polysomnogram test [Online].
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data to a computer.
A technician in

Respiration and apnea events:
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Bottom levels = deep sleep

Sleep Apnea Guide (2016), The polysomnogram test [Online].
These devices are expensive and
moderately invasive
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DI PARMA

Systems for patient monitoring

Seizures and nervous system
diseases:

m Based on EEG, ECG and EMG
systems
Respiration and apnea events:
m Measure the Respiratory Rate
(RR)
m Based on chest/abdomen elastic
belts or nasal flow meter

Both require prolonged monitoring and
specialized medical staff

Challenge

Devise wire-free, non-invasive,
low-cost monitoring systems

Riccardo Raheli (University of Parma)
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Sleep Apnea Guide (2016), The polysomnogram test [Online].
These devices are expensive and
moderately invasive
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Contactless RR monitoring DI PARMA

Spirometric sensor

Microwave sensor
Antennas

Volunteer

m Microwave radar sensors

USB, spirometric and power cables

Spirometer

m Fiber optic sensors (e.g.,
integrated in “smart bed”)

~PC

m Networks of wireless sensors 7 ey N
(e.g., WSNs around the patient) Tipods sattery

D. Dei et al., “Non-contact detection of breathing using a
microwave sensor,” Sensors (MDPI), 2009.

m Wearable devices and

FBG3 FBG1 FBG

Smart-watChes (eg’ Smart OPTICAL SENSING
sensors or clothing) INTERROGATOR
PC/LAPTOP

FBG10 FBG12

V. Mishra and N. Singh, “Optical fiber gratings in
perspective of their applications in biomedicine,”
Biomedicine, InTech, 2012.
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Contactless RR monitoring DI PARMA

m Microwave radar sensors R
. . E — Person

| Eber optlc.sensors (e.g. £ e

integrated in “smart bed”) B - High Ampl.

o

m Networks of wireless sensors

(e.g., WSNs around the patient) v 41 bo be

. -5 e g

m Wearable devices and % oot Zie )

smart-watches (e.g., smart e antorg et g i e st

sensors or clothing)

S. Bouwstra et al., “Smart jacket design for neonatal
monitoring with wearable sensors,” 6th Int. Workshop
Wearable and Implantable Body Sensor Netw., 2009.
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Contactless RR monitoring DI PARMA

m Microwave radar sensors —
. . E — Person

| Eber optic sensors (e.g., £ 2

integrated in “smart bed”) 8 -~ [ligh Ampl.

S

m Networks of wireless sensors

(e.g., WSNs around the patient) w0 i1 4o bs

. 0.5k
m Wearable devices and 2 coortrine )’
N. Patwari et al., “Monitoring breathing via signal strength

smart-watches (eg - smart in wireless networks,” IEEE Trans. Mobile Comput., 2014.
sensors or clothing) r

Possible solution

Video processing-based techniques
for monitoring of respiration
movements' S. Bouwstra et al., “Smart jacket design for neonatal

monitoring with wearable sensors,” 6th Int. Workshop
Wearable and Implantable Body Sensor Netw., 2009.
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UNIVERSITA :

Video-processing based methods DI PARMA |

m Video-processing algorithms to
detect specific movements or to
estimate the RR of the framed
subject

m Monitoring the patient with one
or more digital cameras

m Possibility to use the system in
hospital or in domestic
environments

m Video material obtained in the
Neonatal Intensive Care Unit of
the University Hospital of Parma
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Early work DI PARMA

m N. B. Karayiannis et al.: pioneering work on the subject of seizure
detection and analysis of newborns’ movements by video cameras

Automated Detection of Videotaped Neonatal Seizures
Based on Motion Tracking Methods

Nicolaos B. Karayiannis,* Yaohua Xiong, * James D. Frost, Jr.,1 Merrill S. Wise, 1}
Richard A. Hrachovy,1§ and Eli M. Mizrahit}

Epilepsia (Wiley) 2006
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Early work DI PARMA

m N. B. Karayiannis et al.: pioneering work on the subject of seizure
detection and analysis of newborns’ movements by video cameras

m Based on motion tracking of the limbs (e.g., optical flow, block
motion models, template matching)

890 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 14, NO. 7, JULY 2005

Quantifying Motion in Video Recordings of Neonatal
Seizures by Regularized Optical Flow Methods

Nicolaos B. Karayiannis, Senior Member, IEEE, Bindu Varughese, Guozhi Tao, James D. Frost, Jr., Merrill S. Wise,
and Eli M. Mizrahi

Riccardo Raheli (University of Parma) IARIA - MMEDIA 2017 Venice (IT), Apr. 23th 2017 7151



UNIVERSITA

Early work DI PARMA

m N. B. Karayiannis et al.: pioneering work on the subject of seizure
detection and analysis of newborns’ movements by video cameras
m Based on motion tracking of the limbs (e.g., optical flow, block
motion models, template matching)
m Use of neural networks (NNs) for event detection and motion
classification (different types of seizures)
m Analysis of the motion strength and motor activity signals

676 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 52, NO. 4, APRIL 2005

Automated Extraction of Temporal Motor Activity
Signals From Video Recordings of Neonatal
Seizures Based on Adaptive Block Matching

Nicolaos B. Karayiannis*, Senior Member, IEEE, Abdul Sami, James D. Frost, Jr., Merrill S. Wise, and Eli M. Mizrahi
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Early work DI PARMA

m N. B. Karayiannis et al.: pioneering work on the subject of seizure
detection and analysis of newborns’ movements by video cameras

m Based on motion tracking of the limbs (e.g., optical flow, block
motion models, template matching)

m Use of neural networks (NNs) for event detection and motion
classification (different types of seizures)

m Analysis of the motion strength and motor activity signals

m Focused only on neonatal seizures

m Methods involving optical flow, block matching and NNs may
require algorithms for features extraction, learning and
computationally inefficient systems

Need for fast, straightforward and reliable algorithms for
real-time analysis of newborns’ movements to promptly detect
possible disorders
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Outline DI PARMA

H Detection of seizures
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Motion information extraction (1/2) U R

video DoF
input ’

ﬁi ey
Xol| I @~{ H |- D] [ ]
\, 7 ¢

B[n|

spatial
average

N . ¥

(a) gray-scale (c) binarization (d) erosion

m Process video frames: four steps (gray-scale, DoF, binarization, erosion). This
highlights the body parts affected by motion

m Project the 2D signal into 1D by spatial averaging to significantly reduce
complexity

m Extract a signal representing the movement “pattern” of the involved body parts
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UNIVERSITA

Motion information extraction (2/2) DI PARMA

m Seizures are characterized by specific movements of limbs or
body parts

m Clonic seizures: periodic movements with a repetition time
between 0.5-2.5 s

Motion signal L|i]

Time [s]

'
Igi]

Example of clonic seizure in a newborn
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UNIVERSITA

Motion information extraction (2/2) DI PARMA

m Seizures are characterized by specific movements of limbs or
body parts

m Clonic seizures: periodic movements with a repetition time
between 0. 5—2 5 ]

0 S |

g%g pRySRE

e =

EMG3+ EMG3- ¢

=

m Extracted peI’IOdIC movements correspond to an epileptic event in
the EEG with comparable periodicity
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Motion information extraction (2/2) DI PARMA

m Seizures are characterized by specific movements of limbs or
body parts

m Clonic seizures: periodic movements with a repetition time
between 0.5-2.5 s

EEG Fp2 C4 slgnal

i

% [frame number]

Average Motion[pixels]

m Extracted periodic movements correspond to an epileptic event in
the EEG with comparable periodicity
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Detection of clonic seizures (1/2) DI PARMA -

m Clonic seizures detection by periodicity analysis
m Model of periodicity in the motion signal L[n]:

L[n] = ¢+ Acos (2m fonTs + ¢) + w[n] (1)

m Maximum-Likelihood (ML) approach for estimation of the vector of
parameters 0 = [A, fo, ¢]

m Fundamental frequency estimation becomes:

N-1 2

fo = arg max Z L{n)e=32mnTs (2)
f n=0
m Amplitude estimation: A = ‘ZN ! L[n]e—72mfonT:

m Absence/presence seizures threshold: N A2 >
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Detection of clonic seizures (2/2) R
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UNIVERSITA

Performance in seizures detection DI PARMA

m Detection system is investigated considering a binary test:

B Sensitivity: o = —2—;  Specificty: 5 = 45—

nTp+nrEN’

m Receiver Operating Characteristic (ROC)

m Processing with temporal windows N7, = 10 s, with 50%
interlacing factor

m Performance evaluation on 10 video samples of 5 min duration
with resolution 360 x 288 pixels, recorded at 25 Hz

]
Real Positive  Real Negative
Positive test nrp = 51 npp = 16
7 Negative test ngpN =7 nrn = 210
0_4: Performance o =0.88 B =093
0.2'" I Table: Detection of clonic seizures (one B&W camera).
0 02 04 06 08 1

1-3
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UNIVERSITA

Extension to multiple sensors (1/2) DI PARMA

m Performance in seizure detection can be improved employing
multiple sensors

m Multi-camera systems can see movements that may be covered
for a single camera

m Extension of the periodicity model for S sensors

Lg[n] = cs + Agcos (2m fonTs + ¢s) +ws[n] s € {1,2,...,5} (3)

m Data fusion for periodicity estimation

Z Ly[n]e 7271

n=0

2

fo = arg max Z

s=1

m A significant periodic component is declared if a threshold  is
exceeded according to & S A2>q
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UNIVERSITA

Extension to multiple sensors (2/2) DI PARMA

m Covered movements can be detected by camera sensors with
different viewpoints

File Tools View Simulation Help

- 4WPE® > Q-0 Fl2

— n
CAMERA 1
- 2 . ; ‘/{\ : < e Motion
. signals
CAMERA 2 1 ‘ Y, ? e Ls[f]
CAMERA 3 | A ,\ -

Time [s)
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UNIVERSITA

Performance with multi-cam DI PARMA

m Processing with temporal windows N7, = 10 s, with 50%
interlacing factor

m Performance evaluation on 4 video samples of 1 min duration with
resolution 360 x 288 pixels, recorded at 25 Hz

1

Real Positive  Real Negative

0.9 ® A Camera 1 — 9

* P> Camera 2 Positive test ntp = 50 ngp =9
08 xr 'y Camera 3 Negative test =7 =218

3 X Cameras 1 & 2 9 NFN = TN =
0.7 + Cameras 1 &3 Performance a =0.88 B =0.96
W ¥ Cameras 2 & 3
0.6 ® Cameras 1,2& 3 aple: Detection of clonic seizures (3 RGB
05 A cameras).
i}
0 01 02 03 04 05
1-p

m Better performance by increasing the number of sensors involved
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UNIVERSITA

Application of depth sensor DI PARMA
m Depth information can be used to improve the ability of a standard
video-based system to distinguish pathological movements from:

El background noise
H random movements not concerning the framed patient

Real Positive  Real Negative

m Performance evaluation on 2 Positive test  nrp — 138 npp = 10
video samples of 10 min duration negative test ~ npy = 12 nN =78
with resolution 640 x 480 pixels, perormance o — 0.92 8 =088

recorded at 30 Hz
Table: Detection of clonic seizures (1 camera +

m Issues: shadowing noise depth sensor [S = 2]).
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UNIVERSITA :

Tracking of movements DI PARMA |

m Selection of a part of the
body to track (e.g. limbs)

m Feature selection as Most
Interesting Motion Point
(MIMP) by optical flow
analysis

m Trajectories extraction by
features tracking with
template matching

m Similarity measure: Mean
Absolute Difference (MAD)
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UNIVERSITA

Outline DI PARMA -

E Monitoring of respiration and its disorders
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UNIVERSITA

Issues on motion information extraction "o/ rarma -

m Extraction of a signal which describes the amount of breathing
movement in a video recorded by an RGB camera

m The algorithm employed for large movements is inefficient

ihllmll Mh‘ M I

N
o

—
IS )

Average luminance signal

Tlme [s]
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Issues on motion information extraction "o/ rarma -

m Extraction of a signal which describes the amount of breathing
movement in a video recorded by an RGB camera

m The algorithm employed for large movements is inefficient

m I

12

2.5
2
15

it

PROBLEM

Difficulty in the extraction of a reliable motion signal for small
movements, such as the ones related to respiration
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UNIVERSITA

Subtle motion magnification DI PARMA

m Eulerian Video Magpnification (EVM):
El frame decomposition by Laplacian pyramid {Py,...,Py_1}
B pixel-wise temporal filtering {Yq,..., Y7 1}
variable gain amplification {«o,...,ar_1}
B video frame reconstruction
m Application of the motion extraction algorithm after the EVM

processing I Y
m ML approach: A[n] = ¢+ cos(27 fy sn+ ) J; w(n)]
fo = argmax; |[DFT {L[n]} |

P T
ey 4

B T I T,

P, R ar_1 fl.’Lq

decomposition
reconstruction

Temporal BP-IIR filter
(pixel-by-pixel)
V
v ->€f

"Wu, Rubinstein, Shih, Guttag, Durand, Freeman, “Eulerian video magnification for revealing
subtle changes in the world,” ACM. Trans. Graph., vol. 31, no. 4, pp. 65:1-65:8, July 2012.
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Subtle motion magnification DI PARMA

m Eulerian Video Magpnification (EVM):
El frame decomposition by Laplacian pyramid {Py,...,Py_1}
B pixel-wise temporal filtering {Yq,..., Y7 1}
variable gain amplification {«o,...,ar_1}
B video frame reconstruction
m Application of the motion extraction algorithm after the EVM
processing

m ML apprOaCh: I:[ ] = C+cos(27rf0Tn + ¢) —i—w[n]
fo = argmaxf |IDFT {L 1312

‘b OB aad @

@

"Wu, Rubinstein, Shih, Guttag, Durand, Freeman, “Eulerian video magnification for revealing
subtle changes in the world,” ACM. Trans. Graph., vol. 31, no. 4, pp. 65:1-65:8, July 2012.
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UNIVERSITA

Performance in apnea detection? DI PARMA

m Applied on video recordings framing newborns for performance
evaluation in the detection of apnea events

m Analysis of the signal L[n] is performed on half-interlaced
windows with a time duration of NT;, =20 s

m Results are reported in terms of sensitivity («) and specificity (3),

where:
Trp TN (5)

O{ = B pr
Trp + Trn Tt~ + Trp

2This algorithm is referred to as Motion Magnification for Apnea Detection (MMAD).
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Performance in apnea detection?

m Applied on video recordings framing newborns for performance
evaluation in the detection of apnea events

m Analysis of the signal L[n] is performed on half-interlaced
windows with a time duration of NT;, =20 s

m Results are reported in terms of sensitivity («) and specificity (3),

where:
Trp TN (5)

O{ = B pr
Trp + Trn Tt~ + Trp

Performance in apnea detection
case DA Trp Trn Tvp TFn « I5;
worst 13 1200 1800 500 140 0.90 0.78
best 17 1340 1920 380 O 1.00 0.83

Legend: DA=number of Detected Apneas; T'rp, T'rn, Trp, Trn (S)-

2This algorithm is referred to as Motion Magnification for Apnea Detection (MMAD).
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UNIVERSITA

Drawbacks (1/2)

DI PARMA

m EVM is employed as a pre-processing system = video is
processed two times

m The method for the extraction of motion signal is highly inefficient
for periodical breathing movements:

El DoF = high-pass FIR filter with H(f) =1 — =927/
H breathing frequencies of a newborn at rest = 18 — 60 bpm

X[n]J—| EVM

—

Motion
signal
extraction

Riccardo Raheli (University of Parma)

— Ln]

Magnitude [dB]

18 — 60 bpm

=IIR band-pass filter
== DoF filter

IARIA — MMEDIA 2017

2 3 -4 5
Frequency [Hz]
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UNIVERSITA

Drawbacks (2/2) DI PARMA

m EVM is employed as a pre-processing system = video is
processed two times

Integration of EVM with motion analysis algorithm.
Motion
EVM |—» signal —"FL[TL]
extraction | =

CLELLIS

»
=

“ssssssssssssssnnsnnnnnnnnnnnn®

EO |
m Integration of the EVM
algorithm with the motion

Magnitude [dB
o)
S

signal extraction algorithm = -30 18 — 60 bpm TR bandcpass e
m Use of appropriate digital ok . UL

. 0 1 2 3 4 5

filters Frequency [Hz]
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Spatio-temporal RR estimation?® o Ekama

*»—»ﬂ—»@—»
]~ [~ —

@]—> nb,(w) —»@J—>>_>@_>
Py T Qan-1
l (pixel-by-pixel) T

- o |-

PN extraction
binarization |- b

spatial
reconstruction

decomposition

RR
- .
estimator

m Avoid to use the DoF filter in the extraction of L[n] = employ the
temporal filters of the EVM

m Avoid to reconstruct the overall pyramid for frame reconstruction
= employ the pyramidal levels

3This algorithm is referred to as Spatio-Temporal video processing for RR estimation (STRE).
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Spatio-temporal RR estimation? DI PARMA

| | QL Lo | extractmn
— —_— HBp(f) —_ T[, —_— —_— blnanzanon —_ —_— io
I I I cxlraclmn _\
—> —_— HBP( —— —— —_— bmanzauon —> estimator
extraction
D ] N S v R
Pr Yo -1 B Ll

(pixel-by-pixel)

)

=
g
= 2
g 2
2

= £
8
3
S

video
input

m Avoid to use the DoF filter in the extraction of L[n] = employ the
temporal filters of the EVM

m Avoid to reconstruct the overall pyramid for frame reconstruction
= employ the pyramidal levels

m Frames processing for motion information extraction on pyramidal
levels = data fusion for RR estimation

3This algorithm is referred to as Spatio-Temporal video processing for RR estimation (STRE).
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UNIVERSITA

Spatio-temporal RR estimation? DI PARMA

T
| a
Lo _\

extraction

decomposition

(pixel-by-pixel)

File Tools View Simulation Hzlp | File Tools View Simulation Help
;‘-QOE‘EQ@&’“/E G- 40OPE - Q-A- £&-
T T T T

onser=20 1-20.560

3This algorithm is referred to as Spatio-Temporal video processing for RR estimation (STRE).
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Performance in RR estimation R

m RR estimated from {Eg}jz_ol signals (employed for data fusion) are
compared with rates estimated from pneumogram.

m According to medical practice, a tolerance of +15% is considered.

1
—0.8
=
2 0.6
g
S 11
g04 I Opneumograph H
E - *I,i wRR video estimation
i *extended MMAD
0.24%._ .
- --tolerance boundaries

2 4 6 8 10 12 14 16
Window

Example n.1
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UNIVERSITA

Performance in RR estimation DI PARMA

m RR estimated from {Eg}jz_ol signals (employed for data fusion) are
compared with rates estimated from pneumogram.

m According to medical practice, a tolerance of +15% is considered.

Frequency [Hz]

Window

Example n.2
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UNIVERSITA

Exploiting pixel-wise variations DI PARMA

pixel variations (intensity)

m Periodic pixel-wise variations can be exploited to analyze
spatio-temporal movements of the framed patient

m Pixel-wise variations can be modeled as
X[n] = C+ Acos(2r foTsn + ®) + W|n] (6)

m ML approach to estimate the vector of parameters 6 = [a., fo, ¢v]
(where s, [n] = vec (S [n]))
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UNIVERSITA

Pixel-wise ML approach DI PARM

m The likelihood function becomes:

M My—1 N—1
Z Z xy[p ]cos(27rf0Tn—|—¢v[p])] (7)
m Estimation of the fundamental frequency:
f My My—1 [N—1 . 2
fo =2 argmax Ty[p,nle 2N 8
fo= % argmax ZO ZO [p, n] (8)

m Pixel-wise amplitudes may be estimated as:
N-1

Z xv[ ’n]e—jQﬂfoTsn

n=0

m The ML approach can be both used to estimate the RR of the
framed patient and select areas, inside the video frames, mainly
affected by respiratory movements
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Pixel-wise ML video processing (1/2)  “b\tkawa

ROI ML J,(8) | _J(8) RR
selection % data fusion| estimation
R
5:1 <1'H> <H—T> for oy
ROI video sy | lLarge
extraction —HR—> detection

m Analysis of pixel-wise variations related to respiratory movements
and estimate the RR of the framed patient:

m Selection of R areas (Regions Of Interest, ROI) involved in
respiratory movements only

m Large motion detection on ROI, which can compromise
performance in the estimation of RR

m Data fusion on multiple ROI to reinforce and improve RR estimation
m Estimation is performed on temporal windows of NT; seconds
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UNIVERSITA

Pixel-wise ML video processing (2/2) DI PARMA

ROI ML J,(0) | _J(6) RR
selection $ data fusion estimation
R
e <1‘H> <H_T> K |5=1
ROI video = m&zﬁzm
extraction —HR—> detection
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UNIVERSITA

Pixel-wise ML video processing (2/2) DI PARMA

ROI ML J,.(8) | _J(0) RR
selection % data fusion| estimation
R
71? =1 <H’l> <H—T> Kr |§:1
ROI video 4 mgziaerri(;nt
extraction —HR—> detection

W x W

m The ML approach is applied to ROI, to reinforce estimation and
avoid the interference of large movements
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UNIVERSITA

Pixel-wise ML video processing (2/2) DI PARMA

ROI ML J,.(8) | _J(0) RR
selection % data fusion| estimation
R
71? =1 <H’l> <H—T> Kr |§:1
ROI video 4 mgziaerri(;nt
extraction —HR—> detection

m The ML approach is applied to ROI, to reinforce estimation and
avoid the interference of large movements
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UNIVERSITA

Analysis of pixel variations DI PARMA

m The pixel-wise ML approach exploits temporal periodicity of pixels
involved in respiratory movements

100
) d
(my1,ma) = (i, ma)= (950 215)
= mm E Em; my)= ()38 j“’”
‘ 40 -
/ —( 0,219))
20 (m, m) (230,220)|]
0 5 10 15 20
Time [s]
200 _ *P\(m.m_,):(zrm.zm)7
kfs =0.6513 Hz =P (my.m) = (230,216
150 P\(nu.mz):(‘zm.217)’
=Pl ma)=(230,218)
= 100 P (m1,m2)=(230,219) ]
(

P\(m,m): 230,220)

Small movements near the throat =
can be also used to estimate
the RR 0
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Examples of RR estimation M

m The algorithm can estimate the RR over time, monitoring
continuously the framed patient

Estimated Amplitudes - Global Likelihood Function

ot
1% = 082494

200 400 600

Frequency [Hz]

ital freq

o
o

Frequency [Hz]
o

(=
«

b

o

5 10 15 20
Window
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UNIVERSITA

Performance analysis DI PARMA

m The pixel-wise ML algorithm is compared with the “gold-standard”
pneumogram and the STRE algorithm

m Tests for the whole video and usina a number of ROl R = 4

[ Jtolerance boundaries
{Opneumograph
-#-STRE

e proposed (whole frame)
-e-proposed (4 ROI)

2 4 6 8 10 12 14 16
Window

Example n.1

Riccardo Raheli (University of Parma) IARIA - MMEDIA 2017 Venice (IT), Apr. 23th 2017 31/51




UNIVERSITA

Performance analysis DI PARMA

m The pixel-wise ML algorithm is compared with the “gold-standard”
pneumogram and the STRE algorithm

m Tests for the whole video and usina a number of ROl R = 4

¢ proposed (whole frame) )
-e-proposed (4 ROI)

5 10 15 20 25 30
Window

Example n.2
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UNIVERSITA

Outline DI PARMA -

A Simulators of neonatal disorders
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UNIVERSITA

Analysis and design of RR estimators DI PARMA

m A non-trivial problem: the lack of databases of video recordings
properly matched with reliable medical data:

B apnea events may be rare (CCHS or other syndromes)

m long records with simultaneous RR measurements and video
streams may not be readily available

m Detection and measurement algorithms must be designed, tested
and reliable
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Analysis and design of RR estimators  /sxsma

m A non-trivial problem: the lack of databases of video recordings
properly matched with reliable medical data:

B apnea events may be rare (CCHS or other syndromes)

m long records with simultaneous RR measurements and video
streams may not be readily available

m Detection and measurement algorithms must be designed, tested
and reliable

Statistical models of RR patterns and of respiratory pauses/apnea events

Two models: Simulators:

B respiratory pauses/apnea events m software-based

m complete RR patterns m hardware-based
Continuous-Time Markov Chains In-depth tests of developed video
(CTMC)-based statistical models processing-based algorithms
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Model of apnea episodes

UNIVERSITA
DI PARMA

m Apnea is defined as an absence of respiration of at least 20 s, or
10 s if associated with other symptoms

m Apnea events can be related to severe dysfunctions (Obstruction
Sleep Apnea Syndrome [OSAS] or congenital diseases as
Congenital Central Hypoventilation Syndrome [CCHS])

m Event based statistical model: two-state Markov chain

m Sy = {apnea event}
m b; = {duration of apnea}

S1 = {regular breathing}
a; = {duration of regular breathing}

m model parameters: b; ~ exp(u), a; ~ exp(v)

by

/

——— apnea arrival times

bo+ay b3 +as

Sg
b] H b2 bS

Sy

0

Riccardo Raheli (University of Parma)
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UNIVERSITA

Model of apnea episodes DI PARMA

m Apnea is defined as an absence of respiration of at least 20 s, or
10 s if associated with other symptoms

m Apnea events can be related to severe dysfunctions (Obstruction
Sleep Apnea Syndrome [OSAS] or congenital diseases as
Congenital Central Hypoventilation Syndrome [CCHS])

m Event based statistical model: two-state Markov chain

m S) = {apnea event} Sy = {regular breathing}
m b; = {duration of apnea} a; = {duration of regular breathing}
m model parameters: b; ~ exp(u), a; ~ exp(v)

v
Sg —
by H by bs {no breathing} @ {breathing}
- < ” \_/
S L.
10 7 M
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UNIVERSITA

Model of breathing patterns DI PARMA

m RR of a newborn (at rest): 0.3—1.1 Hz (18—66 bpm)

m The two state model is extended to N state, where each state
{Sn} , represents the RR O o and the order
0o < . < on_1 IS assumed

m States {Sn} ! are properly assigned depending on the presence
of apnea events and large random movements

m The CTMC model is characterized by the inter-arrival times
7y ~ exp(uy,) and from the infinitesimal generator matrix A

A X (t)
ON-1
: 1 Ty T3 Ty 3 AO/' )\O 2 m N—1
QO‘ ~— _/
0 i iy i3 i )\2 0 )\N 1,n
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UNIVERSITA

Estimation of model parameters DI PARMA

Two-state model

m The mean duration of apnea events and of regular breathing can
be estimated from clinical evaluations or pneumographic signals

m Average values may be set as: E{a;} = 1/v, E{b;} = 1/u

m Parameters of the CTMC model are simply estimated
Extended N-state model

m Real RR are estimated from recorded pneumographic signals

m Rates {gn}fl\’:_o1 are selected by Lloyd-Max* quantization to N

levels
m Transition rates and infinitesimal generator matrix are obtained by
ML estimator: A, where \,,,., = Ngﬁg) >0

4s. Lloyd, “Least squares quantization in PCM”, IEEE Trans. Inf. Theory, vol. 28, no. 2, 1982
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UNIVERSITA

Estimation of model parameters DI PARMA
2 T T T T =
1.75 i = Xe Hou
15 A
<1.25% o 103
% 1 FEES 3 ] Q‘_)<><
6<0.75 Ja ]
0.5} ol 3 pe I T H B
0.25+ '
0 : : : : : 0
0 25 50 75 100 125 150

Time [s]

Extended N-state model
m Real RR are estimated from recorded pneumographic signals

m Rates {gn}flvz_ol are selected by Lloyd-Max* quantization to N
levels

m Transition rates and infinitesimal generator matrix are obtained by

ML estimator: A, where A, ,, = % >0

4s. Lloyd, “Least squares quantization in PCM”, IEEE Trans. Inf. Theory, vol. 28, no. 2, 1982
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UNIVERSITA

Simulators DI PARMA

poliwaresbasedis intlalok Hardware-based simulator

m Interpolation and decimation of
video frames in order to
accelerate or slow down
breathing movements

m Noise compensation algorithm
to maintain background noise

e
ileTools View Simulation Help F
i 0% aay [ ap L)
] (C]

PINC)

lofiset: 25,964
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UNIVERSITA

Simulators DI PARMA

Software-based simulator Hardware-based simulator

m Able to replicate breathing
movements of the chest

m Based on Arduino UNO board
to drive the DC step motor
which move part of the chest

moving
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UNIVERSITA

Simulators DI PARMA

Software-based simulator Hardware-based simulator

m Able to replicate breathing
movements of the chest

m Based on Arduino UNO board
to drive the DC step motor
which move part of the chest

s 0m aay Ol

Ore =@

z 0 ® g 10 iz i i i E

753 [fme oftset: 3.6
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UNIVERSITA :

Simulation of apnea events DI PARMA

Breathing signals
=)
o
o
C

5 10 15 20
0.02¢
YA\~ ©
0 L
0 5 10 15 20
Time [s]

+ (a) normal breathing pattern [original video]
- (b) software-simulated respiratory pause
+ (c) real respiratory pause
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UNIVERSITA

Simulation of breathing patterns DI PARM

Observatlon instant

@v@ (&)_(=)_(®)

Apnea or
respiratory pause

00 = 0 Hz 01 = 0.38 Hz 02 = 0.69 Hz 03 = 0.99 Hz 04 = 1.3 Hz
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Performance by simulated patterns e

m Performance for the detection of apnea events with two
algorithms: MMAD and STRE

m Performance is measured in terms of:
m Receiver Operating Characteristics (ROC)
m sensitivity («) and specificity (53)
m Area Under Curve (AUC)

m Diagnostic Odds Ratio A = 2 - =5

1

m (a) performance for
software-based
simulator 505

m (b) performance for
hardware-based
simulator (

a I
@ MMAD, AUC = 0.93 @ @ MMAD, AUC = 0.86
ASTRE, AUC = 0.95 (ﬂl ASTRE, AUC = 0.97

0 0.5 1 0 0.5 1
1-8 1-8
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UNIVERSITA

Performance by simulated patterns DI PARMA

m Performance for the detection of apnea events with two
algorithms: MMAD and STRE

m Performance is measured in terms of:
m Receiver Operating Characteristics (ROC)
m sensitivity («) and specificity (53)
m Area Under Curve (AUC)
m Diagnostic Odds Ratio A = 2 - 12

T—a  1—
Algorithm o B A
m (a) performance for MMAD 0888 0.829 38.4
software-based STRE 091 0869 67.1

simulator _ )
(a) Detection performance for software-based simulator.

Algorithm «a B A
MMAD 0.951 0.787 717
STRE 0.923 0.896 103.3

m (b) performance for
hardware-based
simulator

(b) Detection performance for hardware-based simulator.
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UNIVERSITA :

Hardware simulation of seizure events DI PARMA

CIonlc selzures
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UNIVERSITA

Outline DI PARMA

EH Mobile application: smartCED
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SmartCED DI PARM;A

0
co

OpenCV
L ]

#smartCED

Smartphone Based Contactless Epilepsy Detector

Android application for neonatal seizures detection
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SmartCED app UNIVERSITA |

Laboratory test with seizure simulator.
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SmartCED app: ROI selection M
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SmartCED app: multiple sights

Select view mode

Mone

Gray/Single diff 60—
i Gray/Double diff

Single diff/Double diff ¢,

a) Pop-up menu — visione multipla

c) Scala di grigio/Double diff

Riccardo Raheli (University of Parma) IARIA - MMEDIA 2017
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rigio/Single diff

d) Single diff/Double diff

Venice (IT), Apr. 23t 2017

44/ 51



SmartCED app: crisis database

m Count the number of
epileptic crises

m Save starting and ending
time of the detected event

m Display the duration of
each single event

m Show the city where the
event is detected

Riccardo Raheli (University of Parma)

IARIA — MMEDIA 2017

UNIVERSITA

DI PARMA

v &0 ‘0.2 .l W 19:57

smartCED

Crisis: 64

Startdate: Mon 30 Nov 2015, 17:26:5
End Date: Mon 30 Nov 2015, 17:29:25
Country: Parma, Italy

Elapsed Time: 2m 355

Crisis: 63

Startdate: Mon 30 Nov 2015,
End Date: Mon 30 Nov 2015
Country: Parma, Italy

Elapsed Time: 2m 445

Crisis: 62

Startdate: Mon 30 Nov 2015
End Date: Mon 30 Nov 2015,
Country: Parma, Italy

Elapsed Time: 10s

Crisis: 61
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UNIVERSITA

SmartCED app: geo-localization DI PARMA

=QHé®@

& smartCED

France
. Number of Crisis: 7
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UNIVERSITA

Outline DI PARMA

@ Conclusion
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UNIVERSITA

Conclusions DI PARMA

m Algorithms for remote monitoring of newborns

m Periodicity analysis applied to the detection of seizures, apneas
and monitoring of RR

m Statistical models of apneas and breathing patterns based on
CTMCs useful to devise simulators

m Development of software- and hardware-based simulators
to test video processing-based algorithms

m Mobile Android APP for neonatal seizure detection
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UNIVERSITA

Conclusions DI PARMA

m Algorithms for remote monitoring of newborns

m Periodicity analysis applied to the detection of seizures, apneas
and monitoring of RR

m Statistical models of apneas and breathing patterns based on
CTMCs useful to devise simulators

m Development of software- and hardware-based simulators
to test video processing-based algorithms

m Mobile Android APP for neonatal seizure detection

m Extension to other vital signs (e.g. heart rate)

m Development of portable contactless devices to monitor patient on
single-board computers

m Improvement of the statistical models by taking into account other
conditions
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Multimedia material

m Video multimedia support for the article “Markov chain
modeling and simulation of breathing patterns,” in Biomedical
Signal Processing and Control.

DOI: 10.1016/75.bspc.2016.12.002. Direct link.

m Video multimedia support for the article “Monitoring infants by
automatic video processing: A unified approach to motion
analysis,” in Computers in Biology and Medicine.
DOI:10.1016/7.compbiomed.2016.11.010. Direct link.
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