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6. Implementation and Review
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What is Empirical Modelling?

• Mathematical Models:
– Abstractions of systems described using mathematical language:

• Algebra

• Statistics

• Logic

• Algorithms, etc…

• Usage (in all branches of science and technology):
– Experimental tools used to extend our understanding of a system;

– Predictive tools used in:
• Decision-making

• Automated systems control, etc…

• Important dichotomy in their development:
– Theoretical - built from principles that govern the behaviour of the

system

– Empirical - developed by emulating/capturing characteristic
behaviour observed in a system
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• A model developed from observations of the type of system
under investigation

– based on some measure of the quality of its output (replication, utility)

• simple example:
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• …or one developed from observations of an analog of the
system under investigation (a model of a model):

– eg: neural net (ANN) for predicting bomb blast pressures on a structure

… since the simulation model was too slow for use by engineers.2

– used the simulation model to generate training patterns for the ANN

…since detonating explosives near real buildings was too expensive!
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• …can receive streams of input (time-wise input)

• …and/or generate streams of outputs:

– eg: for voice identification, a stream of inputs representing sound
amplitude are integrated by the model to generate a single conclusion:
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• …can operate recursively (self-feedback), a special case
of streaming input and streaming output:

– eg: predicting room temperature over time:
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• …can have a rich internal structure:

– maybe developed directly by the modeler (handcrafted & modular)

– …or developed automatically (such as by a genetic algorithm)

– eg: determining truck attributes from the strain they induce on a bridge
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Estimate:
- number of axles,
- distance between axles
- loads on each axle.
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What is Empirical Modelling?

• Why use Empirical instead of Theoretical modelling?
– Many problems have no theory or limited theory (are poorly

understood)

– Theoretically derived models can be computationally expensive
where an empirically derived model can provide rapid solutions

• Traditional view of limitations of Empirical vs. Theoretical:
– Empirical models are black box devices

• provide limited understanding of the rationale behind their solutions

– Empirical models are less accurate

– Empirical models are limited in scope by the set of observations used
in their development
• can only interpolate (not extrapolate);

• are not extensible to new configurations of the problem

– Experience a geometric explosion in the size of the data set required
for training with respect to the number of independent variables

• However, these are not fundamental limitations, but rather
challenges for empirical modelling (discuss later). 10



Regression Fourier Series Artificial Neural Network

What is Empirical Modelling?
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Currently, most applications use relatively simple direct mapping models:
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Modelling Systems
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Modelling Systems: Introduction
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• Empirical methods can be used to develop models far more
sophisticated than the above simple mapping devices…

• …greatly extending the scope and performance of
applications.

• For any empirical modelling study, there are two broad
issues that must always be considered:
– structure of the model, which comprises two aspects:

• interface (input and output)

• internal structure

– development (training) scheme used to develop the model, for
which there are many types. Typically iterative in nature, in which
case a common dichotomy:
• supervised

• unsupervised

• …But also direct derivation



Static Model Dynamic Model

Modelling Systems: Interface Structure
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Modelling Systems: Interface Structure
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• Important decision is determining the input variables to
include:
– obviously only include those that are significant in terms of

affecting the output values

– however, often these are not known at the outset of the study.
Determination may be by:
• expert judgement,

• published work,

• experimentation with combinations of input variables.

• Some input variables my be relevant but not significant…

• …while others may have overlap/redundancy between each
other.

• Consider: ‘truck type’, ‘engine power’, ‘and haul capacity’:
– The first may implicitly define the 2nd and 3rd and imply additional

important other information such as ‘truck weight’…

– …however, ‘truck type’ is an enumerative type with no progressive
order of values:
• this introduces a discontinuity in the solution function which can be problematic

for many model types (e.g. neural nets)



Modelling Systems: Interface Structure
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• Obviously cannot include variables for which data are not
available

• For many modelling approaches, the number of
observations required tends to increase exponentially
with the number if input variables…

• …but not where there is correlation between those input
variables:



Uncorrelated Input Variables Correlated Input Variables

Modelling Systems: Interface Structure
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Modelling Systems: Internal Structure
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• Internal structure of a model can be:
– Defined implicitly by the type of model used (e.g. regression)

– Derived automatically by the model development algorithm

– Hand-crafted by the model developer (many neural net studies).

• Most studies concerned with determining a set of output
values that correspond to a set of input values…

• …however, a potentially powerful yet under exploited
application focuses on the resultant internal structure
following model development:
– could tell us something about the structure of the problem being

studied, or

– provide a set of rules or principles that can be used to solve related
problems.
• consider the problem of detecting the location of reinforcing steel in a concrete

structure from its acoustic responses across multiple positions:



Simulated evolution based development of internal structure of
model until it replicates the behaviour of the observed system
(using FEM elements)

Modelling Systems: Internal Structure

Key:

= acoustic input
/output sensors

= finite element
mesh

concrete beam
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Modelling Systems: Development Schemes
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• Model development includes:
– Determining an appropriate internal structure:

• e.g. neural net layers, nodes in each layer, connectivity and activation function

– Determining the values for the models attributes/coefficients:
• e.g. neural net weights and base values

• Ideally this will all be determined automatically…

• …often the internal structure has to be hand crafted:
– alternative structures may be tested using sensitivity analyses of

the performance.

• Most model development algorithms operate iteratively:
– Progress is measured and directed by an objective function, e.g:

• to minimize errors when attempting to replicate a set of observed input to
output mappings (supervised training)

• to maximize utility such as the production rate in an excavation system
(unsupervised training)



Modelling Systems: Development Schemes
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• Performance usually requires the model to be evaluated for
a different set of examples than that used for training:
– This set must be fully representative of the types of problem to

which the model will be applied;

– Performance should be measured in a way that is relevant to the
way the model be used:
• e.g. a dynamic model will be used iteratively and may experience compounding

errors, so the testing should be made for complete run sequences, not just the
first iteration;

• this is illustrated in the following:



Modelling Systems: Development Schemes
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Empirical Modelling Methodology
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• Development and implementation of an empirical model
must follow a rigorous set of procedures to ensure validity:
– Can recognize 6 steps common to all studies:



Empirical Modelling Methodology: Step 1: Strategizing
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• The aims of strategizing are:
– Identify the objectives of the study

– Determine a likely appropriate set of input variables

– Gain a feel for how the system being modelled responds to
different variables, e.g.
• Linear vs non-linear;

• Stochastic vs. deterministic, etc…

• Questions to be answered at this stage:
– What type and structure to adopt for the model?

– What development algorithm to adopt?

– What is the objective function?

– What are the sources for information and what new studies will be
required to acquire the necessary data for training, model
selection, and validation.

• A pilot study may be required to help answer these
questions and to determine feasibility.



Empirical Modelling Methodology: Step 1: Strategizing
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• Gaining a graphical understanding of the problem can be
extremely useful at this stage:
– Plotting each output variable against each of the input variables:

• Relevance of each input variable

• Complexity of the response of the system – e.g. linear vs. non-linear

• Existence of unexplained variance in the response of the system

– Plotting each of the input variables against each other
• Determine correlation between inputs

– Both approaches illustrated in the following two figures:



Empirical Modelling Methodology: Step 1: Strategizing
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Empirical Modelling Methodology: Step 1: Strategizing
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Empirical Modelling Methodology: Step 1: Strategizing
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• Understanding a problem is critical to selecting an
appropriate type of model:
– Consider the following:



Empirical Modelling Methodology: Step 1: Strategizing

Fitting Functions of Different Complexity to a Set of Observations
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Empirical Modelling Methodology:
Step 2: Data Collation and Evaluation
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• Most empirical modelling studies require 3 sets of data:
– Training data set – used to develop the model

– Testing data set – used to compare the performance of
alternative models and variants of the model

– Validation data set – used to make a final validation of the
performance of the final model

• Each of these data sets must be assessed or designed to
make sure that it is representative of the problem.

• An appropriate data set size is dependent on:

– complexity of the problem…

– …and may be determined through sensitivity analyses

• An appropriate data set distribution is dependent on:

– form of the problem (some areas may require higher
density of observations)…

– …and may be assessed using graphical plots:



Empirical Modelling Methodology:
Step 2: Data Collation and Evaluation
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Empirical Modelling Methodology:
Step 2: Data Collation and Evaluation
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• Where you can control the set of observations used for
modelling:
– Make sure all observations cover the entire problem domain

– Many layout schemes are available, but make sure appropriate
for the problem at hand

– If use a regular grid, the testing and validation sets should
normally still be randomly positioned



Empirical Modelling Methodology:
Step 2: Data Collation and Evaluation

Distribution of Observations Collected from Controllable Systems
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Empirical Modelling Methodology:
Step 3: Model Development

34

• Whereas step 1 (strategizing) identified a conceptual
design for the model,…

• …step 3 develops the finalized design for the model.

• Progress in training can be monitored for both the
training data set and the testing data set:
– Training terminates where the testing data set performs

optimally…

– …going beyond this point can cause ‘overtraining’
(memorization);

– consider the following:



Empirical Modelling Methodology:
Step 3: Model Development

Progress in Model Development for Studies that use Search Algorithms

Simulated evolution applied to
model structure.

Error Error

Iteration # Iteration #

*
**

**
* * * * *

Key: = fitting data set error
= testing data set error

Key: = fitting data set error
= testing data set error
= selected versions of model*

Optimal version of
model

Optimal version of
model

*
*

*
**

*
* * * *

Error gradient descent applied to
model coefficients. 35



Empirical Modelling Methodology:
Step 3: Model Development
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• Some model parameters are not adjusted by the model
development/training algorithm, e.g.:
– Number of layers in a neural net

– Number of neurons in a layer of a neural net

– Number of observations used for training

– Set of input variables used, etc…

• These will need to be adjusted manually, and in a
methodical way:



Empirical Modelling Methodology:
Step 3: Model Development

Searching for an Input Configuration for a Model (Excavation)
that Minimizes the Testing Error
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Empirical Modelling Methodology:
Step 4: Model Evaluation and Final Selection
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• The study at this stage may have generated several
candidate models

• These should be thoroughly evaluated using the testing
data set to select the best

• Performance should not be based just on the objective
function…

• …the performance across the problem domain should
also be considered to look for consistency in
performance:



Empirical Modelling Methodology:
Step 4: Model Evaluation and Final Selection

Evaluating Error across the Problem Domain

Error plotted as a
contour map.

Error plotted against input variable.
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Empirical Modelling Methodology:
Step 5: Final Validation

40

• At this stage we have the final version of the model

• This needs to be validated:
– to get an accurate assessment of its performance

– to see whether further development may be required

• Should not use the testing data set for this as the model
may have some bias towards it

• Requires a 3rd independent data set.



Empirical Modelling Methodology:
Step 6: Implementation and Review

41

• Education of end-users:
– Collection and organization of input data to ensure model

validity

– Interpretation of the output from the model

– Usage of the model for problem solving

• Where possible, feedback from use to continue validation
and improvement of the model.



Challenges and Emerging Solutions
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Challenges:
• can interpolate but less accurate than theoretical models

(in truth is often more accurate than theoretical modelling)

• limited ability to extrapolate (beyond the set of solutions
used in their development)

• are black box devices (providing no explanation of their
output)

Extrapolate?

real system

empirical model
Black Box

Disadvantages of empirical modeling:
• many disadvantages are cited…

• …however, these are not absolute limitations but rather
challenges that we are attempting to overcome:
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• the number of observations required increases
geometrically with the number of independent variables:
– say we need a density of 5 training examples across the range of an

independent variable:

– with two independent variables this increases to 52=25 examples:

– for ANN’s a practical limit is typically 5 or 6 independent variables,
say 56=15,625 observations, otherwise training is too slow.

# independent variables: 1 2 3 4 5 6 7 8 9
# observations (5/variable): 5 25 125 625 3,125 15,625 78,125 390,625 1,953,125

* * * * *
problem domain

independent
variable 1

* * * * *
problem domain

* * * * *
* * * * *
* * * * *
* * * * *
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• a need to handle various types of variance, such as:
– value/amplitude variance for spatially distributed inputs:

– stochastic variance and error for spatially distributed inputs:

Base values
(amplitudes)

Values (amplitudes)
increased

Values (amplitudes)
decreased

Noisy and missing
values

45



– value/amplitude variance for streams of input

– eg: strain in girder induced by truck crossing bridge

lower amplitude could be due to lighter loads

OR due to truck travelling in adjacent lane

- ambiguous

Strain

TIME

Strain

TIME

46



• a need for flexibility in the input format:
– empirical models usually restricted to a fixed layout of the input values

– …yet many problems require variation in the presentation of the inputs

– variation may be for spatially distributed inputs:

Base mapping (1) Translation (2) Rotation

(3) Scaling (4) Distortion
47



– …or variation may be for streams of inputs

– eg: strain in girder induced by truck crossing bridge

Strain

TIME

uncertain starting point for truck crossing

Uncertain starting point in input data stream

Translation
(shift)

TIME

Strain

Strain
high velocity truck crossing event

TIME

low velocity truck crossing event

stretched envelope

compressed envelope

Impact of velocity on input data stream

Scaling

Impact of acceleration on input data stream

Strain
changing velocity truck crossing event

TIME

distorted envelope

Distortion
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• uncoupling data sets:
– many data sets/streams comprise two or more overlapping (or

partially overlapping) data sets/streams

– …we often need to uncouple them to handle them separately

– eg: strain induced in girder by 2 trucks crossing bridge
simultaneously

Observed Strain

TIME

 

Strain induced by truck A

TIME

Strain induced by truck B

TIME
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• extendibility of a model:
– empirical models are developed to solve a class of problems

– …often there is a need to extend the class of problems solved
(increase the functionality of the model)

– …eg: determining truck attributes from bridge strain data:

– extension should be achievable without the model-user having to
rebuild the existing model

extend min & max axle loads considered (extend values of dependent variables)

Strain

TIME

extend range of truck types considered
(extend model internal structure, extend number of dependent variables)

extend range of values for strain readings considered (extend values of independent variables)

Others:
extend bridge lengths considered,
extend number of lanes, etc…
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APPROACH TO THESE CHALLENGES:
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A rich future source of inspiration for
empirical modelling is the brain:
• provides effective empirically derived solutions to many

complex problems

• overcomes many of the challenges identified earlier:
– eg: face recognition: spatial interpolation, translation, rotation, scaling,

distortion, amplitude, noise:

– eg: following a single
conversation amongst a
chattering crowd:

uncoupling signals, etc…

Which US
politician do

you recognize?

bla! bla! bla!

bla! bla!

bla!
bla!
bla!

bla! bla!
bla!

bla! bla!
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• arguably the brain is the ultimate black box

…but as we start to analyze its organization and operation
we are discovering:

– parts of the brain, at least, model the world as a set of
meaningful features within a rich hierarchical structure

– lowest level in the visual system hierarchy comprises
detectors tuned to local features in an image such as orientation,
spatial frequency, direction of movement, speed…

– second level in the visual system integrates lowest level output
with more specialized detectors tuned to features such as contours

– ultimately within the hierarchy there are detectors tuned to
very high level tasks such as recognition of a face (a US politician)

• similarly other brain systems, such as the auditory system,
are based on a hierarchy of tuned feature detectors
– …(although there are many other sub-systems in the brain for

which we currently have little or no understanding)

• so, empirical models do not have to be black boxes
– they can develop richly structured models of the world

– …where the internal structure is an insightful analog of the
internal structure of the problem represented 53



• what about exponential explosion in number of observations
required?

– richly structured models can resolve (or help resolve) this challenge

– consider the simple problem of identifying vertical lines of two
adjacent dots on a receptive matrix:

matrix
size

total # of
possible
observations

# of 2 dot
features that
are vertical
and adjacent

2 x 2 42 = 16 2

3 x 3 92 = 512 6

4 x 4 162 = 65,536 12

5 x 5 252 = 3.36x107 20

…

16 x 16 2562 = 1.16x1077 240
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– a direct mapping model (mapping directly from input to output)
would require a # of example observations proportional to column 2

…the model would also be proportional in complexity to this

…currently, most empirical models are implemented as direct maps

– a structured model (in this case with local feature detectors) would
be proportional in complexity to column 3

– this is a simple example, but the argument extends to more complex
patterns (if use a hierarchy of feature detectors)

matrix
size

total # of
possible
observations

# of 2 dot
features that
are vertical
and adjacent

2 x 2 42 = 16 2

3 x 3 92 = 512 6

4 x 4 162 = 65,536 12

5 x 5 252 = 3.36x107 20

…

16 x 16 2562 = 1.16x1077 240
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• what about extendibility?

– structured models are highly conducive to extension due to their
inherent modularity

– …extending the size of the receptive field (previous example)
would just require an extension in the number of feature detectors

– example is the coarse-grain modelling approach for the simulation
of blast wave propagation around complex geometries:4

• the spatial matrix through which the wave propagates is composed of
empirically derived sub-models

…allows model to be configured from a course mesh (1 m vs. 2 cm)

…yet retains accuracy of conventional simulation
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• indeed, the brain has provided modelling inspiration for
60/70 years in the fields of:
– artificial intelligence (emulate intelligence at a high level)

– …and in particular ANN’s (intelligence is an emergent property)

• …however, progress has been frustratingly slow
– our knowledge of how the brain interprets, represents, and

processes different types of information is still rudimentary

– practical applications have similarly been limited in terms of
the complexity of the problems solved

• compare the progress of ANNs with other devices:
– digital computing has developed exponentially

– can now build massive ANNs comparable in size to small
mammalian brains (although operationally simplified)

– …but not been able to exploit this in practical applications

– biological model indicates a far greater potential
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1.00E+00

1.00E+11

1.00E+10

1.00E+09

1.00E+08

1.00E+07

1.00E+06

1.00E+05

1.00E+04

1.00E+03

1.00E+02

1.00E+01

Number Primary
Processing
Elements

Brains:
Biological
Neurons

Human (1.00E+11)

Sheep (1.01E+10)

Rabbit (1.00E+09)

Hamster (1.04E+08)

Bull Frog (1.78E+07)

Salamander (1.00E+06)

Fruit Fly (2.00E+05)

Sea Slug (1.80E+04)

Nematode (3.02E+02)

Digital Computers:
Transistors/Switches

Intel 62- Core Xeon Phi
Processor
Year 2012 (5.60E+09)

Integrated Circuit,
Year 1971 (2.30E+03).

1st Stored Memory
Computer,
Year 1947 (2.05E+03).

Integrated Circuit
Moore’s Law extrapolation
Year 2022 (1.00E+11)

Compare progress: ANNs versus General Purpose Digital Computer

Not
application

specific

Blue Brain
Project

Year 2007
(1.00E+04)

ANN’s:
Artificial Neurons

IBM’s C2
Simulator
Year 2009
(1.00E+09)

Application
specific

Heat Simulation6

Year 2005 (8.04E+02)

Typical models
(1.50E+01)

Deep Learning5

Year 2009
(2.00E+03)
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• then there is the question how to develop richly structured
models:
– need to learn their own internal structure and representations

…these are not an explicit part of the observation data

– for the brain:
• parts of a model that are common to a broad range of problems may be

developed through evolution

• more novel aspects of a problem developed through direct experience
(training)

…how to apply either of these processes effectively within a
computing environment is not clear

…especially true for very large models (comprising say millions of
neurons)
• simulated evolution and other training methods are slow to converge for large

models

• Deep Learning (Hinton et al.) is one of several attempts
at developing models with rich internal structures
– however, applications have been fairly limited (character

recognition for example). 2
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• an alternative approach for developing massive very
complex model structures is artificial embryogenesis
(growth algorithms)

– simulated evolution would be applied to a genotype

– the genotype is NOT the end model but rather a code used to
direct the growth of the model

– possibly well suited to structures that have a lot of repetition

…only one version of the repeated element would have to be
learned
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Neuron type:
1st daughter
neuron type

2nd daughter
neuron type

3rd daughter
neuron type

1  2 3 4
2 
3  5
4  4 6
5  5
6 

11 21

3

21

3

2

4

1

3

2

4

5

1

3

2

4

5
4

1

3

2

4

5
4

6

1

3

2

4

5
4

6

5

Parent neuron type 1:Parent neuron type 3:Parent neuron type 4:Parent neuron type 5:...continue this process:

1 2

3

4

5
4

6

5
4

6

5
4

6

5
4

6

5
4

6

Etc...

• Consider the following simple growth table:

• could enhance this approach with multi-stage objective
functions
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Empirical modeling:
• a very powerful means of modelling

…but its potential has been largely untapped

• current models tend to be direct mapping devices:
– no significant internal structure

– provide no analog of the internal workings of the system under
consideration

– consequently restricted by issues such as:
• black box devices

• number of observations required for development = geometric function of
number of independent variables

• limited ability to handle variance in the presentation of a problem

• limited ability to extrapolate and extend to new versions of a problem

• approach to overcoming these challenges:
– inspiration from biology:

• structure, operation, evolution, development, and learning in the brain

SUMMARY AND CONCLUSIONS:
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