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Topics Covered:

e \What is Empirical Modelling?

® Modelling Systems:
Interface Structure
Internal Structure
Development Schemes

e Empirical Modelling Methodology:
1. Strategizing
2. Collation and Evaluation of Data
3. Model Development
4. Model Evaluation and Final Selection
5. Final Validation
6. Implementation and Review

¢ Challenges and Emerging Solutions







What is Empirical Modelling?

e Mathematical Models:

— Abstractions of systems described using mathematical language:
e Algebra
e Statistics
® Logic
e Algorithms, etc...

e Usage (in all branches of science and technology):

— Experimental tools used to extend our understanding of a system;

— Predictive tools used in:
® Decision-making
e Automated systems control, etc...

e Important dichotomy in their development:

— Theoretical - built from principles that govern the behaviour of the
system

— Empirical - developed by emulating/capturing characteristic
behaviour observed in a system



L

S —

What is Empirical Modelling?

e A model developed from observations of the type of system |
under investigation

— based on some measure of the quality of its output (replication, utility)
e simple example:

Duration to Sink Pile (hours)

¢ fitting data points  Otesting data points

INPUTS OUTPUTS

Duration
to Sink Pile
Pile length (hours)

(m)

(EMPIRICAL MODEL)

=
o
)
0
|
(a4
O
i
(a'd
(a4
<C
L
=
o
=
o
P

5 10 15 20 25 30
Pile Length (m)




What is Empirical Modelling?

e _.or one developed from observations of an analog of the
system under investigation (a model of a model):

— eg: neural net (ANN) for predicting bomb blast pressures on a structure
... since the simulation model was too slow for use by engineers.?2

— used the simulation model to generate training patterns for the ANN
...Since detonating explosives near real buildings was too expensive!
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What is Empirical Modelling?

e . .can receive streams of input (time-wise input) -
e _.and/or generate streams of outputs:

— eg: for voice identification, a stream of inputs representing sound
amplitude are integrated by the model to generate a single conclusion:
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What is Empirical Modelling?

e .can operate recursively (self-feedback), a special case
of streaming input and streaming output:

— eg: predicting room temperature over time:
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What is Empirical Modelling?

e _.can have a rich internal structure:

— maybe developed directly by the modeler (handcrafted & modular)
— ...or developed automatically (such as by a genetic algorithm)
— eg: determining truck attributes from the strain they induce on a bridge
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What is Empirical Modelling?

e Why use Empirical instead of Theoretical modelling?

— Many problems have no theory or limited theory (are poorly
understood)

— Theoretically derived models can be computationally expensive
where an empirically derived model can provide rapid solutions
¢ Traditional view of limitations of Empirical vs. Theoretical:

— Empirical models are black box devices
e provide limited understanding of the rationale behind their solutions

— Empirical models are less accurate

— Empirical models are limited in scope by the set of observations used
in their development

e can only interpolate (not extrapolate);
e are not extensible to new configurations of the problem

— Experience a geometric explosion in the size of the data set required
for training with respect to the number of independent variables
e However, these are not fundamental limitations, but rather
challenges for empirical modelling (discuss later).



What is Empirical Modelling?

Currently, most applications use relatively simple direct mapping models:

Regression Fourier Series Artificial Neural Network






Modelling Systems:

e Empirical methods can be used to develop models far more
sophisticated than the above simple mapping devices...

e . .greatly extending the scope and performance of
applications.

® For any empirical modelling study, there are two broad
issues that must always be considered:

— structure of the model, which comprises two aspects:
e interface (input and output)
® internal structure

— development (training) scheme used to develop the model, for
which there are many types. Typically iterative in nature, in which
case a common dichotomy:

® supervised
® unsupervised
e _..But also direct derivation



Modelling Systems:

Static vs. dynamic modelling interface structures. Example: modelling
the performance of an excavator-truck earthmoving system:

INPUTS OUTPUTS INPUTS OUTPUTS
Truck typee ’q_’Mean production Truck typee ’q—b Production rate
Truck engine powere—p rate Truck engine power e—p (stream of values)
Truck haul capacitye—» d Truck haul capacitye—»
Number of trucks a HE?«.:avgtor Number of trucks ~— E)Fgavgtor
_ O utilization factor _ utilization factor
Haul distance S Haul distance
] (stream of values)
Haul road conditione— Mean truck queue Haul road conditione—®r |||
Excvtr. bucket sizeo—b\_j_> length Excvtr. bucket size e— 8 Truck queue
[ -
Excavator utilization t-15 S length
Excavator utilization t-10 (s.tream of values
S with feedback)
Excavator utilization t-5

Queue length t-15
Queue length t-10

Queue length t-5

Static Model Dynamic Model



Modelling Systems:

e Important decision is determining the input variables to
include:

— obviously only include those that are significant in terms of
affecting the output values

— however, often these are not known at the outset of the study.
Determination may be by:
e expert judgement,
e published work,
e experimentation with combinations of input variables.

e Some input variables my be relevant but not significant...

¢ ._.while others may have overlap/redundancy between each
other.
e Consider: ‘truck type’, ‘engine power’, ‘and haul capacity’:
— The first may implicitly define the 2" and 3" and imply additional
important other information such as ‘truck weight'...

— ...however, ‘truck type' is an enumerative type with no progressive
order of values:

e this introduces a discontinuity in the solution function which can be problematic
for many model types (e.g. neural nets)
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Modelling Systems:

e Obviously cannot include variables for which data are not
available

® For many modelling approaches, the number of
observations required tends to increase exponentially
with the number if input variables...

e _..but not where there is correlation between those input
variables:




Modelling Systems:

Relationship between correlation and number of training patterns required
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Modelling Systems:

e Internal structure of a model can be:

— Defined implicitly by the type of model used (e.g. regression)
— Derived automatically by the model development algorithm
— Hand-crafted by the model developer (many neural net studies).

® Most studies concerned with determining a set of output
values that correspond to a set of input values...

e _.however, a potentially powerful yet under exploited
application focuses on the resultant internal structure
following model development:

— could tell us something about the structure of the problem being
studied, or

— provide a set of rules or principles that can be used to solve related
problems.

e consider the problem of detecting the location of reinforcing steel in a concrete
structure from its acoustic responses across multiple positions:



Modelling Systems:

Simulated evolution based development of internal structure of
model until it replicates the behaviour of the observed system
(using FEM elements)
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Modelling Systems:

® Model development includes:
— Determining an appropriate internal structure:

e.g. neural net layers, nodes in each layer, connectivity and activation function

— Determining the values for the models attributes/coefficients:

e.g. neural net weights and base values

® Ideally this will all be determined automatically...

e _ .often the internal structure has to be hand crafted:

— alternative structures may be tested using sensitivity analyses of
the performance.

e Most model development algorithms operate iteratively:
— Progress is measured and directed by an objective function, e.qg:

to minimize errors when attempting to replicate a set of observed input to
output mappings (supervised training)

to maximize utility such as the production rate in an excavation system
(unsupervised training)



Modelling Systems:

® Performance usually requires the model to be evaluated for
a different set of examples than that used for training:

— This set must be fully representative of the types of problem to
which the model will be applied;

— Performance should be measured in a way that is relevant to the
way the model be used:

® e.g. a dynamic model will be used iteratively and may experience compounding
errors, so the testing should be made for complete run sequences, not just the
first iteration;

e this is illustrated in the following:



Modelling Systems:

Comparison of Errors for Static versus Dynamic Models

Key: =* =target outputs; Key: /~..- =target for one example problem;
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® Development and implementation of an empirical model
must follow a rigorous set of procedures to ensure validity:
— (Can recognize 6 steps common to all studies:




Empirical Modelling Methodology:

® The aims of strategizing are:
— Identify the objectives of the study
— Determine a likely appropriate set of input variables

— Gain a feel for how the system being modelled responds to
different variables, e.q.
® Linear vs non-linear;
® Stochastic vs. deterministic, etc...

® Questions to be answered at this stage:
— What type and structure to adopt for the model?
— What development algorithm to adopt?
— What is the objective function?

— What are the sources for information and what new studies will be
required to acquire the necessary data for training, model
selection, and validation.

e A pilot study may be required to help answer these
questions and to determine feasibility.



Empirical Modelling Methodology:

¢ Gaining a graphical understanding of the problem can be
extremely useful at this stage:
— Plotting each output variable against each of the input variables:
e Relevance of each input variable

e Complexity of the response of the system — e.g. linear vs. non-linear
e Existence of unexplained variance in the response of the system

— Plotting each of the input variables against each other
e Determine correlation between inputs

— Both approaches illustrated in the following two figures:



Empirical Modelling Methodology:

Plotting Output vs. Input for a Set of Existing Observations
of the Response of a System
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Empirical Modelling Methodology:

Plotting Input vs. Input for a Set of Existing Observations of
the Response of a System
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Empirical Modelling Methodology: “tcp 1 Strategizing

e Understanding a problem is critical to selecting an

appropriate type of model:
— Consider the following:
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Empirical Modelling Methodology: “icp 10 Strategizing

Fitting Functions of Different Complexity to a Set of Observations
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Empirical Modelling Methodology:

e Most empirical modelling studies require 3 sets of data:
— Training data set — used to develop the model

— Testing data set — used to compare the performance of
alternative models and variants of the model

— Validation data set — used to make a final validation of the
performance of the final model

® Each of these data sets must be assessed or designed to
make sure that it is representative of the problem.

e An appropriate data set size is dependent on:

— complexity of the problem...

— ...and may be determined through sensitivity analyses
e An appropriate data set distribution is dependent on:

— form of the problem (some areas may require higher
density of observations)...

— ...and may be assessed using graphical plots:



Empirical Modelling Methodology:

Distribution of 12 Observations Across the Problem Domain

P i = problem domain; + = observation data points
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4 Empirical Modelling Methodology:
Step 2: Data Collation and Evaluation

e \Where you can control the set of observations used for
modelling:
— Make sure all observations cover the entire problem domain

— Many layout schemes are available, but make sure appropriate
for the problem at hand

— If use a regular grid, the testing and validation sets should
normally still be randomly positioned

TS0 AN
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Empirical Modelling Methodology:

Distribution of Observations Collected from Controllable Systems

Key: : : = problem domain; * = observation data points
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Empirical Modelling Methodology:

e \Whereas step 1 (strategizing) identified a conceptual
design for the model, ...

e  .step 3 develops the finalized design for the model.

® Progress in training can be monitored for both the
training data set and the testing data set:

— Training terminates where the testing data set performs
optimally...

— ...going beyond this point can cause ‘overtraining’
(memorization);

— consider the following:



Empirical Modelling Methodology:

Progress in Model Development for Studies that use Search Algorithms
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Empirical Modelling Methodology:

e Some model parameters are not adjusted by the model
development/training algorithm, e.q.:
— Number of layers in a neural net
— Number of neurons in a layer of a neural net
— Number of observations used for training
— Set of input variables used, etc...

® These will need to be adjusted manually, and in a
methodical way:




Empirical Modelling Methodology:

Searching for an Input Configuration for a Model (Excavation)
that Minimizes the Testing Error
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Empirical Modelling Methodology:

® The study at this stage may have generated several
candidate models

® These should be thoroughly evaluated using the testing
data set to select the best

® Performance should not be based just on the objective
function...

e . .the performance across the problem domain should
also be considered to look for consistency in
performance:



Empirical Modelling Methodology:

Evaluating Error across the Problem Domain
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Empirical Modelling Methodology:

e At this stage we have the final version of the model

® This needs to be validated:
— to get an accurate assessment of its performance
— to see whether further development may be required

e Should not use the testing data set for this as the model
may have some bias towards it

e Requires a 3" independent data set.



! Empirical Modelling Methodology:
Step 6: Implementation and Review

® Education of end-users:

— Collection and organization of input data to ensure model
validity

— Interpretation of the output from the model
— Usage of the model for problem solving

e \Where possible, feedback from use to continue validation
and improvement of the model.

RN






Disadvantages of empirical modeling:

e many disadvantages are cited...

e .. .however, these are not absolute limitations but rather
challenges that we are attempting to overcome:

Challenges:

® can interpolate but less accurate than theoretical models
(in truth is often more accurate than theoretical modelling)

¢ |imited ability to extrapolate (beyond the set of solutions
used in their development)

® are black box devices (providing no explanation of their
output)

Extrapolate?

Black Box N
empirical model .
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e the number of observations required increases
geometrically with the number of independent variables:

— say we need a density of 5 training examples across the range of an
independent variable:

independent
variable 1

— with two independent variables this increases to 52=25 examples:

| 1A

independent
variable 2

ALY

independent
variable 1

— for ANN'’s a practical limit is typically 5 or 6 independent variables,
say 56=15,625 observations, otherwise training is too slow.

# independent variables: 1 2 3 4 5 6 7 8 9
# observations (5/variable): 5 25 125 625 3,125 15,625 78,125 390,625 1,953,125
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® a need to handle various types of variance, such as:

— value/amplitude variance for spatially distributed inputs:

Noisy and missing

values
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— value/amplitude variance for streams of input
— eg: strain in girder induced by truck crossing bridge

Strain
A

>
TIME

lower amplitude could be due to lighter loads
OR due to truck travelling in adjacent lane

- ambiguous

Strain

AT N

>
TIME




® a need for flexibility in the input format:
— empirical models usually restricted to a fixed layout of the input values
— ...yet many problems require variation in the presentation of the inputs
— variation may be for spatially distributed inputs:
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— ...or variation may be for streams of inputs
— eg: strain in girder induced by truck crossing bridge

Strain

Translation
(shift)

uncertain starting point for trU(;< crossing
TIME
Uncertain starting point in input data stream

Strain low velocity truck crossing event

/f\—v stretched envelo[|:>
~_ N

Strain TIME

A high velocity truck crossing event
/\\Q]mpressed envelope <_
>

TIME
Impact of velocity on input data stream

Strain _ : :
changing velocity truck crossing event
—> distorted enveloc|%>
>

TIME
Impact of acceleration on input data stream
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® uncoupling data sets:

— many data sets/streams comprise two or more overlapping (or
partially overlapping) data sets/streams

— ...we often need to uncouple them to handle them separately
— eg: strain induced in girder by 2 trucks crossing bridge

simultaneously

Observed Strain

Strain induced by truck A
A

TIME

D

Strain induced by truck B
A

N S

TIME
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e extendibility of a model:
— empirical models are developed to solve a class of problems

— ...often there is a need to extend the class of problems solved

(increase the functionality of the model)
— ...eg: determining truck attributes from bridge strain data:

extend min & max axle loads considered (extend values of dependent variables)

extend range of truck types considered
(extend model internal structure, extend number of dependent variables)

d range of values for strain readings considered (extend values of independent variables)

Strain
T Others:

~ exten

)
—
j—
—

extend bridge lengths considered,
extend number of lanes, etc...

/ = TME |

— extension should be achievable without the model-user having to
rebuild the existing model



* APPROACH TO THESE CHALLENGES:

e

-_—




A rich future source of inspiration for
empirical modelling is the brain:

e provides effective empirically derived solutions to many
complex problems

e overcomes many of the challenges identified earlier:

— eg: face recognition: spatial interpolation, translation, rotation, scaling
distortion, amplitude, noise:

— eg: following a single
conversation amongst a
chattering crowd:

uncoupling signals, etc...

- bla! bla! blal
bla! bla! e !
; 4/ blal blat
7 bIa'

bla! bla!

Which US
politician do
you recognize?
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"o arguably the brain is the ultimate black box

...but as we start to analyze its organization and operation
we are discovering:

— parts of the brain, at least, model the world as a set of
meaningful features within a rich hierarchical structure

— lowest level in the visual system hierarchy comprises
detectors tuned to local features in an image such as orientation,
spatial frequency, direction of movement, speed...

— second level in the visual system integrates lowest level output
with more specialized detectors tuned to features such as contours

— ultimately within the hierarchy there are detectors tuned to
very high level tasks such as recognition of a face (a US politician)
e similarly other brain systems, such as the auditory system,
are based on a hierarchy of tuned feature detectors
— ...(although there are many other sub-systems in the brain for
which we currently have little or no understanding)
® 5o, empirical models do not have to be black boxes
— they can develop richly structured models of the world

— ...where the internal structure is an insightful analog of the
internal structure of the problem represented

Lot i A
nlli )



— richly structured models can resolve (or help resolve) this challenge
adjacent dots on a receptive matrix:

— consider the simple problem of identifying vertical lines of two

required?

e what about exponential explosion in humber of observations

-
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— a direct mapping model (mapping directly from jAput to output)
would require a # of example observations prgportional to column 2

...the model would also be proportional in cgmplexity to this
...currently, most empirical models are implemented as direct maps

— a structured model (in this case with local feature detectors) would
be proportional in complexity to column 3

— this is a simple example, but the argument extends to more complex
patterns (if use a hierarchy of feature detectors)



e what about extendibility?

— structured models are highly conducive to extension due to their
inherent modularity

— ...extending the size of the receptive field (previous example)
would just require an extension in the number of feature detectors

— example is the coarse-grain modelling approach for the simulation
of blast wave propagation around complex geometries:*

¢ the spatial matrix through which the wave propagates is composed of
empirically derived sub-models

...allows model to be configured from a course mesh (1 m vs. 2 cm)

AR

...yet retains accuracy of conventional simulation
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/0 indeed, the brain has provided modelling inspiration for
60/70 years in the fields of:

— artificial intelligence (emulate intelligence at a high level)
— ...and in particular ANN’s (intelligence is an emergent property)

e ..however, progress has been frustratingly slow

— our knowledge of how the brain interprets, represents, and
processes different types of information is still rudimentary

— practical applications have similarly been limited in terms of
the complexity of the problems solved

- e compare the progress of ANNs with other devices:
— digital computing has developed exponentially

— can now build massive ANNs comparable in size to small
mammalian brains (although operationally simplified)

— ...but not been able to exploit this in practical applications
— biological model indicates a far greater potential




Compare progress: ANNs versus General Purpose Digital Computer
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¢ then there is the question how to develop richly structured
models:

— need to learn their own internal structure and representations
...these are not an explicit part of the observation data
— for the brain:

e parts of a model that are common to a broad range of problems may be
developed through evolution

e more novel aspects of a problem developed through direct experience
(training)

...how to apply either of these processes effectively within a
computing environment is not clear

...especially true for very large models (comprising say millions of
neurons)

¢ simulated evolution and other training methods are slow to converge for large
models

e Deep Learning (Hinton et al.) is one of several attempts
at developing models with rich internal structures

— however, applications have been fairly limited (character
recognition for example). 2



¢ an alternative approach for developing massive very
complex model structures is artificial embryogenesis
(growth algorithms)

— simulated evolution would be applied to a genotype

— the genotype is NOT the end model but rather a code used to
direct the growth of the model

— possibly well suited to structures that have a lot of repetition

...only one version of the repeated element would have to be
learned




s dau
Neuron type: 1% dau
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e could enhance this approach with multi-stage objective
functions



~ SUMMARY AND CONCLUSIONS:

g Empirical modeling:

e a very powerful means of modelling
...but its potential has been largely untapped

e current models tend to be direct mapping devices:
— no significant internal structure

— provide no analog of the internal workings of the system under
consideration

— consequently restricted by issues such as:
¢ black box devices

e number of observations required for development = geometric function of
number of independent variables

¢ |imited ability to handle variance in the presentation of a problem
¢ |imited ability to extrapolate and extend to new versions of a problem

e approach to overcoming these challenges:

— inspiration from biology:
e structure, operation, evolution, development, and learning in the brain
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