
Extracting Executable Architecture from Legacy Code
using Static Reverse Engineering

REHMAN ARSHAD

The University of Manchester, UK



Research Context

Product Line
Engineering

Component
Base

Development

Reverse
Engineering

Research



Reverse Engineering

• Reverse engineering can be viewed as the process of analysing a system to identify the system’s
components and their interrelationships, create representations of the system in another form or
a higher level of abstraction or to create the physical representation of that system.



Current Reverse Engineering Approaches

• General

o Semantics extraction

o Bug localisation

o Model extraction

• Product Line

o Formation of feature model

o Feature locations in terms of code



Reverse Engineering Analysis Techniques

• Static

• Textual

• Dynamic

• Hybrid

1)Good Recall
2)Reusability
3)False Positive
possibility

1)No Model
Needed
2)Implicit
Relations
3)Quality of
Queries

1)Precision
2)Low Recall
3)Non-reusability



Executable Architecture

• An executable architecture is a dynamic simulation of an architecture model. It captures both
structural and behavioral aspects of the architecture in a form that can be visualized and analyzed
in a time dependent manner.



Classification of Component Models

7



Research Problems

• Why extraction of components is not widely considered by the reverse engineering researchers,
specially in the field of product line engineering?

• Why static reverse engineering is the best option to extract architectural notation from legacy
systems?

• How extraction of architecture can reduce coupling?

• How reverse engineering in general is different from component based reverse engineering?



X-MAN

Atomic Component Composition Connector Composite Component

IC

CU
IC

CU

IC

CU

IC: Invocation Connector
CU: Computation Unit

9



X-MAN

1. Exogenous composition

2. Exogenous connectors for composition that define control coordination

3. Invocation connectors: connected to computational units and access their methods

4. Composition connectors: define and coordinate control for set of components

10



Composition Connectors in X-MAN

11



• USE CASE STUDIES TO
EMPIRICALLY EVLAUATE SOURCE
CODE VS COMPONENTS

• USE FX-MAN API TO DEPOSIT
COMPONENTS IN SHARED CDO
REPOSITORY

• SEMANTIC MAPPING FROM
ABSTRAT MODEL OUTPUT TO X-
MAN METAMODEL TO FORM
COMPONENTS

• USE STATIC ANALYSIS RULES TO
MAP EACH ANALYSIS RULE FOR
EVERY CONTROL STATEMENT

• EXTRACT ALL METHOD
INVOCATIONS

• MAP THE HIERARCHY OF
FUNCTIONAL CALLS

• USE INTERMEDIATE DATA
STRUCTURE TO STORE METHOD
INTERACTIONS

• DOCUMENT STATS LIKE TOTAL
NUMBER OF CALSSES, METHOD
INVOCATION FOR EACH METHOD
AND NUMBER OF METHODS IN
EACH CLASS (IT WILL HELP IN
EMIRICAL EVALUATION LATER)

• AST API TO GET ALL PACKAGES
• GENERATE AST TREE WITH K-

COMPILATION UNIT
• TRAVERSE THROUGH ALL

PACKAGES TO EXTRACT AND ADD
NODES

AST TREE GENERATION PARSING THE TREE
STATIC ABSTRACT

MODEL OF EXTRACTION
MAPPING TO X-MAN

META MODEL

API TO DEPOSIT THE
COMPONENTS IN CDO

EMPIRICAL EVALUATION
ON CASE STUDIES

CONTINOUS
REFINEMENT OF

ABSTRACTION MODEL

Source
Code



RX-MAN

Source Code

AST Parsing

Designed Data
Structures

Atomic components for
Non single application

systemsB
Atomic Components

System Composed via
Atomic/composite

Components in case of
Single application system

B C



Control Statements to be considered

• If else Statements

• For Statements

• While Statements

• Do Statements

• Switch Statements



State Charts VS X-MAN Control Structure



Single Application System VS non single code bases

F-
SEQ

B C

B C

B C B C B CB C

Utility Component

Utility Component

Utility Component

SEQ/SEL..



Approach applied on

• JabRef Model packages (35 Classes, 8 Atomic Components), 40 Secs

• EverNote API SDK (27 Classes, 4 Components) 30 Secs

• TeamMates API (51 Classes, 4 Components), 55 Secs

• JabRef Full Code from Quality Corpus (903 Classes, 37 Components), 22 Minutes



Classes to Components Ratio So Far

• JabRef Model packages (35 Classes, 8 Atomic Components), 4.3%

• EverNote API SDK (27 Classes, 4 Components), 6.75%

• TeamMates API (51 Classes, 4 Components), 12.7%



B

Loop

SEL

C

1 4

2 3 23

While A
{
If B then B() else C()
}



5 )Switch (i)

{

Case (1):

A();

Case (2):

B();

Default:

C();

}

A

SEL

B C



6) for (A <n)

{

While (C<m)

{

C();

}

do B();

}

B

Loop

Loop

C

Loop

SEL



FX-MAN

22



Q&A

Questions?

23


