Hacking Bluetooth Low Energy Based Applications

Tal Melamed
Application Security Expert
Tal@appsec.it

The Twelfth International Conference on Internet Monitoring and Protection
ICIMP 2017
June 25 - 29, 2017- Venice, Italy
Discussed Topics

- Key aspects in Bluetooth Low Energy (BLE)
- How is it different than Bluetooth Classic?
- Where is the risk?
- Bluetooth Low Energy Architecture
- The Security Manager
- Bluetooth Pairing
- Generic Attribute Profile (GATT)
- Man-in-the-Middle (MitM)
- Related work
- Possible Mitigations
- Bibliography
What is Bluetooth Low Energy

- Bluetooth Low Energy (BLE)
 - a.k.a Bluetooth Smart, part of Bluetooth 4

- Designed to be power-efficient

- Significantly smaller and cheaper.

- Low cost and ease of implementation lead BLE to be widely used among IoT devices and applications

- Wearables, sensors, lightbulbs, medical devices, and many other smart-products.

- 48 billion IoT devices expected by 2021, and Bluetooth—predicted to be in nearly one-third of those devices
Where is the difference?

- BLE vs BT Classic
 - Different architecture (Master-Slave)
 - Different modulation parameters
 - Different channels
 - Different channel-hopping scheme
 - Different packet format
 - Different packet whitening
Where is the risk?

BLE products can be found in our day-to-day life...

Hacking Bluetooth Low Energy Based Applications - ICIMP 2017
BLE Architecture

- **Apps**
 - Applications are built on top
 - Interacts with host layer only
 - Different API’s depending on the application environment

- **Host**
 - Sits on top of the Radio
 - Provides API to applications

- **Controller**
 - Radio Control
 - Connection Linking
 - Radio Testing
 - Interface to Host
Security Manager

- Three phase process on connection
 - Pairing feature exchange
 - Short term key generation
 - Transport specific key distribution
- Implements a number of cryptographic functions
Security Manager

- Has AES-128 capabilities

- Uses Key Distribution to share various keys
 - Bluetooth Smart (4.0) uses an insecure BLE 4.1/5.0 uses EC-DH for key exchange

- Pairing encrypts the link using a Temporary Key (TK)
 - Derived from passkey
 - Then distribute keys
Pairing

- Using keys to encrypt the communication
 - The keys can be used to encrypt future reconnections
- Can also verify signed data, or perform random address resolution

- 3-phase for pairing
 - Pairing Feature Exchange
 - Short Term Key (STK) Generation (legacy pairing)
 - Long Term Key (LTK) Generation (4.1/5.0 Secure Connections)
 - Transport Specific Key Distribution
Pairing

- How to determine the temporary key (TK)?
 - **JustWorks™**
 - Legacy, most common
 - Devices without display cannot implement other
 - It's actually a key of zero, that's why it just works...
 - **6-digit PIN**
 - In case the device has a display
 - 1 million options (BF-able)
 - **Out of band (OOB)**
 - Does not share secret key over the 2.4 GHz band (used by protocol)
 - Makes use of other mediums (e.g. NFC)
 - Once secret keys are exchanged, encrypts the channel
 - Not common, barely used
Generic Attribute Profile (GATT)

- Services & characteristic are identified by an associated UUID.
- A characteristic contains a single value ("attribute").
 - Can be read, written to or subscribed for notifications.

```
Applications
Generic Access Profile
Generic Attribute Profile
Attribute Protocol
Logical Link Control and Adaptation Protocol
Host Controller Interface
Link Layer
Physical Layer

Apps

Host

Controller

SERVICE
Characteristic
Descriptor: string (e.g. "Battery level")
Descriptor: subscription status
Properties: read, write, notify (authenticated or not)
Value
Characteristic (...)

SERVICE (...)
```
Discovering Services - Example

- Any BLE scanner app, downloaded from the store, can read data from and write data to the smart-device.
Normal Man-in-the-Middle (MitM)

Why normal MitM won’t work?
- A BLE adapter cannot serve as both ends
- One will have to serve as the client (app)
- Another as the server (ble device)
After each BLE-adapter (component) is connected to the designated device – they communicate with each other over WebSocket

Which gives them the ability to serve as MitM
What to we need for MitM

- CSR 4.0 dongle x2
 - Works as Slave/Master
- Download Kali-linux VM and Clone
BLE (Bluetooth Low Energy) security assessment using Man-in-the-Middle

https://github.com/securing/gattacker
Hooking into smart-watch sports counter and modifying the data (kilometrage) sent from the smart watch into the device.
BtleJuice

- Bluetooth Smart (LE) Man-in-the-Middle framework

- Replay & on-the-fly data modification
- Web interface

Hacking Bluetooth Low Energy Based Applications - ICIMP 2017
Replay Attack using BtleJuice

- Remote control over the victim’s mobile using *Replay Attack*
 - Taking pictures
 - Playing music
Possible attacks and countermeasures

- **Attacks on advertisements**
 - The attacker clones the advertisement and broadcasts the fake device
 - The device will try to connect and fail

 Countermeasures:
 - Do not rely on received packets for critical functionality

- **Attacks on exposed services**
 - If the device offers services possible to access without authentication, an attacker can:
 - Brute-force data (e.g. guessing the password)
 - Fuzzing (Sending improper values to characteristics)
 - Logic vulnerabilities

 Countermeasures:
 - Restrict access to services (e.g. least privilege)
 - Perform input validation
 - Time-limited provisioning (expose services only for a limited time after power-up, or dedicated button)
Attacks and Countermeasures

Attacks on Pairing

- An attacker can trick the user into re-initiation of the pairing using Jamming, cloning, etc.

Countermeasures:

- “Something you have” (e.g. allow pairing initiation only after performing the required action on the smart device - e.g. push a dedicated button)
- Mobile app should warn when wrong MAC is used.

Man-in-the-Middle (MitM) attack

- Unencrypted transmission can be intercepted via passive eavesdropper
 - Exposing sensitive data (health data, passwords, etc.)
 - Data can be tampered with
 - Replay attack (e.g. unlock device)

Countermeasures:

- Encrypt data in transit, sign it and validate the input
Summary

- This poster confirms that BLE is insecure and vulnerable against passive eavesdropping.
- In particular, I have shown that a passive eavesdropping can easily become an active MitM attack that enables a possible hacker not only to listen to the communication, but also to intercept and manipulate the data.
- By performing a MitM attack, hackers can even control from remote the mobile device used to communicate with the Bluetooth smart device.
- With the release of the Bluetooth Core Specification version 4.2, BLE Security has been significantly improved by the new LE Secure Connections pairing model.
- Additional security and privacy related features are added in the Bluetooth Core Specification v5, recently released by Bluetooth.
- It is vital to be aware and fully understand the limitations of the smart devices that we use rather than blindly relying on them.
- It is essential to implement security protections on the application-side to protect against malicious activity, by implementing additional security controls, such as data encryption, strong authentication and authorization mechanisms, and other security best practices.
Short Bibliography

