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Principal Component Analysis

What is the best representation?
An old problem

Figure: Fragment from the Tomb of Nebamun, Thebes, British Museum.
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Principal Component Analysis

What is the best representation?
An old problem

Figure: Mug shot of American gangster Al Capone, 1931.
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Principal Component Analysis

What is the best representation?
An old problem

6/ Figure: Marie-Thérese portrait, Picasso.



Principal Component Analysis

Main ideas

Context

e a large number of numeric variables possibly correlated,

e analyze data variability by studying the covariance structure.

What do we want to do?

e create a small number of new descriptors,

e capture the maximum amount of variation in the data.

X,

How can we do that? ’

e Looking for new orthogonal directions
such that the variance of the projected
data is maximal.

X

2
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Functional Data

What are Functional Data?

Rather than a sample of points x;, i = 1,...,n, we observe a sample
of entangled curves x;(t), images or functions.
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Figure: Sample of aircraft trajectories (Paris-Toulouse).




Functional Data

What are functional data?

Functional variable (f.v.)

X = {X(t),t € J} is a functional space H-valued random variable
e a continuous stochastic process on a compact interval J,

e 7 is the separable Hilbert space L?(J).

Observed data
A functional dataset x1, ..., X, is n realizations of the f.v. X (or the
observation of n f.v. Xi,..., X, identically distributed as X).

Discretized observed data
» Functional data x;(t) are observed discretely

X,-(t,-j),i:1,...,n,j:1,...,N,-.

» Often given at the same time arguments ty, ..., ty.
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Functional Data

Functional Data Analysis

Inference about functional data

Multivariate statistical techniques are inadequate !

e They don't take into account to the functional nature of data.

e A hard drawback: the curse of dimensionality N > n.
Extend multivariate methods to the functional case

e Functional principal component analysis (FPCA), Clustering.

e Functional linear models, Functional analysis of variance... etc

Generalization is not trivial!

e Data live in infinite dimensional spaces.
e Two types of errors:

» sampling error in random functions drawn from an underlying process,

» measurement error when functions are discrete noisy sample paths.
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Functional Principal Component Analysis

Generalization to the functional case

Multivariate PCA

Functional PCA

individual vector x; € RP

function x;(t) € H

eigenvector u

eigenfunction ~

mean vector x € RP

mean function u(t) € H

covariance matrix

covariance operator

inner product

<U7Xi> = uTXi

inner product

(. 55) = /J ~(B)xi()dt




Functional Principal Component Analysis

Generalization to the functional case

Maximization of variance
The weight function 7; maximizes the variance of the projected data

v1 = argmax Var ({71, X) ).
Inll=1

The subsequent weight functions 7, can be found analogously subject
to the additional constraint (orthogonality)

(vi» k) = /Jv,-(t)w(t) =0,i< k.

» 71,72,... are called functional principal components,

» orthogonality constraints ensure that ~; indicates something new,
» the amount of variation A\; = Var ((7;, X)) will decline stepwise.
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Functional Principal Component Analysis

Estimation

Let Xi,..., X, be a sample of independent functional variables.

Karhunen-Loéve representation

Xi(t)=>"AFi(t), j=1,....n
i=1

Interpretation

e Principal components 7; are modes of variation of individual
trajectories.

® Random scores A;j = (7, Xj) are proportionality factors: measure
the influence of the principal component 7; on the shape of X;.

e o e



Functional Principal Component Analysis

Estimation

Reduction dimension tool: a small number L < n is needed

L

Xi(8) = 3 AgFi(e) tu().
i=1
» A small number L of components is often sufficient to account for
a large part of variation.
» High values of L are associated with high frequency components
which represent the sampling noise.

Quality of representation: % of total variation (Scree Plot
y P
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Application to Aircraft Trajectories

Univariate FPCA: Flight Level

Route: Paris Orly airport — Toulouse airport

Flight level

50 100 150 200

nnnnnnnn

> Aircraft type: A319(25%), A320(41%), A321(24%), B733 (4%),
B463 (2%) AT type (4%).

» Aircraft trajectories measured at 4 seconds intervals.
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Application to Aircraft Trajectories

Univariate FPCA: Flight Level

Effects on the mean trajectory of adding (+) or substracting (-) PC

PCA Scree Plot Principal Components
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» 4 components = 98, 7% of total variation.
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Application to Aircraft Trajectories

Univariate FPCA: Flight Level

Effects on the mean trajectory of adding (+) or substracting (-) PC

Overall effect
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First step effect
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Application to Aircraft Trajectories

Univariate FPCA: Flight Level

Score scatterplots by aircraft types

Score Plot Score Plot Score Plot

Aircralt Type
1 As19

15

w0
>

» detect outliers and clusters in the data,
» interpret clusters,
» explain individual behaviour relatively to modes of variation.
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Application to Aircraft Trajectories

Univariate FPCA: Flight Level

Table: Individual scores by aircraft type

PC1 PC2 PC3 PC4 Outlier
Aircraft type Overall Take-off First step Time shift
AT, E120, B463 + + + +
A320 0 - - -
B733 - - + + *
A319 - + 0 0
A321 + - - 0




Application to Aircraft Trajectories

Multivariate FPCA

Route: Paris Charles de Gaulle airport —> Toulouse airport

Longitude-Latitude trajectories Route

Paris Charles de Gaulle

Toulouse

» Aircraft type: A319(25%), A320(41%), A321(24%), B733 (4%),
B463 (2%) AT type (4%).

» Aircraft trajectories measured at 4 seconds intervals.
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Application to Aircraft Trajectories

Multivariate FPCA

Principal Components (PC): Principal components in X and Y-coordinates

Principal Components X(t)

Principal Components Y(t)
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Principal Component Total Var  X-coord  Y-coord
PC1 Overall effect 58% 2% 98%
PC2 Landing effect 14.7% 48% 52%
PC3 Separation effect 12.9% 86% 14%
PC4 Change procedure effect 6% 66% 34%
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Application to Aircraft Trajectories

Multivariate FPCA

Effects on the mean trajectory of adding (+) or substracting (-) PC
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Application to Aircraft Trajectories

Multivariate FPCA

Mean cluster Trajectories and the overall mean (black curve)
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Table: k-means on scores

Aircraft type  Cluster 1~ Cluster 2~ Cluster 3

A319 15 18 0
A320 14 14 1
A321 25 28 0
AT 2 0 8
B463 10 0 2
B733 22 1 2




Application to Aircraft Trajectories

Multivariate FPCA

Mean cluster Trajectories (Route: Paris Orly airport = Toulouse airport)

Longitude-Latitude trajectories

Route Route
Paris Orly g | o Ty Paris Orly
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X(t)
» FPCA is able to separate the two clusters located at the right side:

a standard approach procedure and a short one at Toulouse airport.
27/ 30



Conclusion

Outline

Conclusion




Conclusion

Conclusion and future works

A dimension reduction tool
» An empirical basis function expansion.
» Dimension reduction: use score vectors instead of functions x;(t).

A powerful visualization tool

» Explore the ways in which trajectories vary.
» Reveal clusters and atypical trajectories

Other applications

» Generalization to 3D trajectories.

» Generate samples of trajectories.

» Reduce the dimension of simulated models.
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