The First International Conference on Advances in Signal, Image and Video Processing SIGNAL 2016 | June 26 - 30, 2016 | Lisbon, Portugal

INSTITUIÇÕES ASSOCIADAS

Interactive discussion on Image and Sound Signals

Coordinator: Prof. Rafael F. S. Caldeirinha

Signal representation

INSTITUIÇÕES ASSOCIADAS

Channel in digital transmission

$$R_b = R_s.lb(M)$$

$$T_m=1/R_S$$

$$t_m \uparrow \Longrightarrow T_m \uparrow \Longrightarrow B \downarrow$$
 (rising edge)

► t_m.B≈0,35 .. 0,45

A generic comunication system

A challenging communication scenario

Real-Time Super High Resolution Image-Intensive Tele- Diagnosis

instituto politécnico

(Quasi) Real-Time Super High Resolution Image-Intensive Tele- Diagnosis

Channel 1: 57.24 59.40 GHz; Channel 2: 59.40 61.56 GHz; Channel 3: 61.56 63.72 GHz; Channel 4: 63.72 65.88 GHz. [Source: A. Ejeye and S. Walker, 2012]

INSTITUIÇÕES ASSOCIADAS

IPL
instituto politécnico

8k UHD (7680 x 4320p), <91 Mbps (H.264) or <50 Mbps (HEVC) 4k UHD (3840 x 216p), <35 Mbps (HEVC)

A challenging communication scenario Real-Time Super High Resolution Image-Intensive Tele- Diagnosis

Uncompressed vídeo/image, zero latency (degradation in low SNR regimes):

INSTITUIÇÕES ASSOCIADAS

A challenging communication scenario

Real-Time Super High Resolution Image-Intensive Tele- Diagnosis

A single Whole Slide Image (WSI):

- 20mm x 15mm region of a glass slide samples at 0.25 microns/pixel
- 24 bits/pixel (8bpp/colour channel)

can easily occupy in excess of 15GB in size.

[Source: https://digitalpathologyassociation.org]

Middle slice of each of the used medical images:

Datasets	Type	Slices	Resolution	Depth (bpp)
Aperts		97	256x256	8
Carotid	CIT	74	256x256	8
Skull	CT	203	256 x 256	8
Wrist		183	256 x 256	8
Liver T1		58	256x256	8
Liver T2E1	MRI	58	256x256	8
Ped Chest	MIKI	77	256x256	8
Sag Head		58	256x256	8

(a) CT_Aperts

(b) CT_carotid

(c) CT_skull

(c) CT_wrist

(a) MR_liver_t1

(b) MR_liver_t2e1

(c) MR_ped_chest

(c) MR_sag_head

[Source: Caldeirinha et al, Project report "Ultra High Definition Image Communication for Medical Imaging", 2015]

Coding performance evaluation for lossless encoders applied to medical images (results in bpp):

Cognones	H.264	HEVC	HEVC	HEVC	MMP	MMP	JPEG	JPEG-LS	CALIC	MRP	JP3D
Sequence	11.204	Intra	RA	RExt	IVIIVII	3D	2000	JFEG-LS	CALIC	MINI	3F 3D
Aperts	1.193	1.289	0.825	0.728	1.178	0.938	1.261	1.058	0.998	0.775	0.941
carotid	2.062	2.198	1.586	1.424	1.977		2.019	1.778	1.684	1.374	1.547
skull	3.183	3.083	1.905	1.766	2.959		2.991	2.761	2.628	2.329	2.088
wrist	1.911	2.195	1.155	1.002	1.717		1.757	1.627	1.550	1.173	1.238
liver_t1	3.489	3.742	2.391	2.052	3.393		3.256	3.160	3.022	2.582	1.745
liver_t2e1	2.806	2.811	1.725	1.509	2.460		2.572	2.418	2.269	1.722	2.356
ped_chest	3.080	3.352	1.700	1.536	3.074		3.021	2.937	2.789	2.337	2.071
sag_head	2.635	2.732	1.873	1.748	2.808		2.905	2.582	2.519	2.279	2.160
Average	2.545	2.675	1.645	1.471	2.446		2.473	2.290	2.183	1.821	1.768

[Source: Caldeirinha et al, Project report "Ultra High Definition Image Communication for Medical Imaging", 2015]

Results of the encoding of the pixel-wise dierence residue (results in bpp).

9	Sequence	H.264	HEVC	HEVC	HEVC	MMP	MMP	JPEG	JP3D	JPEG-LS	CALIC	MRP
	sequence	11.204	Intra	RA	RExt	1011011	3D	2000	31 31	31 EG-ES	OALIO	WIICI
/ 1	Aperts	0.798	0.857	0.722	0.673	0.890	0.869	0.938	0.942	0.794	0.774	0.632
(carotid	1.511	1.633	1.366	1.272	1.544		1.592	1.472	1.396	1.355	1.147
S	skull	2.033	2.101	1.510	1.444	2.095		2.137	1.984	1.974	1.899	1.660
7	wrist	1.112	1.254	0.905	0.860	1.133		1.212	1.218	1.043	1.054	0.851
1	liver_t1	2.189	2.387	1.986	1.852	2.229		2.255	1.693	2.070	2.020	1.765
1	liver_t2e1	1.789	1.971	1.329	1.228	1.721		1.818	2.283	1.685	1.604	1.310
1	ped_chest	1.639	1.738	1.346	1.301	1.749		1.815	1.916	1.631	1.586	1.365
8	sag_head	1.988	2.065	1.580	1.510	2.218		2.185	2.113	2.001	1.979	1.803
_	Average	1.632	1.751	1.343	1.268	1.697		1.744	1.703	1.574	1.534	1.317

[Source: Caldeirinha et al, Project report "Ultra High Definition Image Communication for Medical Imaging", 2015]

Results of the encoding of the HEVC residue (results in bpp):

	Sequence	H.264	HEVC	HEVC	MMP	JPEG	JPEG-LS	CALIC	MRP
	1		Intra	RA		2000			
7	Aperts	0.778	0.836	0.819	0.890	0.926	0.814	0.807	0.700
	carotid	1.472	1.581	1.562	1.544	1.576	1.430	1.410	1.259
	skull	1.836	1.891	1.834	2.095	1.957	1.818	1.736	1.589
	wrist	1.081	1.179	1.152	1.133	1.209	1.087	1.055	0.933
	liver_t1	2.138	2.300	2.256	2.229	2.275	2.120	2.038	1.899
	liver_t2e1	1.560	1.693	1.629	1.721	1.659	1.532	1.461	1.316
	ped_chest	1.583	1.678	1.652	1.749	1.787	1.667	1.553	1.413
	sag_head	1.803	1.863	1.811	2.218	2.015	1.843	1.804	1.661
	Average	1.531	1.627	1.590	1.697	1.676	1.539	1.483	1.346

[Source: Caldeirinha et al, Project report "Ultra High Definition Image Communication for Medical Imaging", 2015]

Communications at 60 GHz - IEEE 802.15.3c

Usage Models:

- (UM1) Uncompressed video streaming
- (UM2) Uncompressed multivídeo streaming
- (UM3) Office desktop
- (UM4) Conference ad hoc
- (UM5) Kiosk file downloading

SC: Single Carrier mode HSI: High-Speed Interface mode AV: Audio-Visual mode

Comparison of the three modes provided by the standard:

	SC PHY	AV PHY	HSI PHY
Main usage model	UM3 and UM5	UM1 and UM2	UM3 and UM4
Typical data rates	$0.3~\mathrm{Mbps}\text{-}5~\mathrm{Gbps}$	0.95-3.8 Gbps	1.54-5.78 Gbps
Transmission scheme	SC-FDE	OFDM	OFDM
Forward error control	Reed Soloman	Reed Soloman code	LDPC
	$\operatorname{code}/\operatorname{LDPC}$		
Block size	512	512	512

INSTITUIÇÕES ASSOCIADAS

[Source: Caldeirinha et al, Project report "Ultra High Definition Image Communication for Medical Imaging", 2015

Communications at 60 GHz - IEEE 802.15.3c

INSTITUIÇÕES ASSOCIADAS

[Source: Caldeirinha et al, Project report "Ultra High Definition Image Communication for Medical Imaging", 2015]

IARIA SIGNAL 2016

instituto de telecomunicações

Immersive 3D Holoscopic Video Processing

3D imaging and video applications are emerging in the consumer market:

- visual inspection
- multilayer incremental vídeo,
- refocusing photography
- glasses-free 3D television

instituto de telecomunicações

INSTITUIÇÕES ASSOCIADAS

Sound particles

Sound Particles is a CGI-like software for Sound Design, capable of using particle systems to generate thousands of sounds in a virtual 3D world.

SOUND PARTICLES

PART

5G Moves into the light: Holographic massive MIMO

[Source:Dennis W. Prathe, IEEE ComSoc Technology News, June 2016]

"(...) new technology that uses optical holographic methods to literally image the signals coming off the massive MIMO antenna array, avoiding a lot of the difficult issues with ADC cost and beam processing. Could this be the missing technology to bring practical MIMO to the field? (...)"

